## (2.1) Linear Equations in One Variable

Objectives
1 Distinguish between expressions and equations.
2 Identify linear equations, and decide whether a number is a solution of a linear equation.

3 Solve linear equations by using the addition and multiplication properties of equality.

4 Solve linear equations by using the distributive property.
5 Solve linear equations with fractions or decimals.
6 Identify conditional equations, contradictions, and identities.

## Distinguish between expressions and equations.

Equations and inequalities compare algebraic expressions.
An equation is a statement that two algebraic expressions are equal

An equation always contains an equals symbol, while an expression does not.


Equation
(to solve)
$3 x-7$


Expression
(to simplify or evaluate)

CLASSROOM EXAMPLE 1

Decide whether each of the following is an equation or an expression.
Solution:
$9 x+10=0 \quad$ equation
$9 x+10$
expression

## Objective 2

Identify linear equations, and decide whether a number is a solution of a linear equation.

## Identify linear equations, and decide whether a number

 is a solution of a linear equation.
## Linear Equation in One Variable

A linear equation in one variable can be written in the form

$$
A x+B=C,
$$

where $A, B$, and $C$ are real numbers, with $A \neq 0$.

A linear equation is a first-degree equation, since the greatest power on the variable is 1 .

Identify linear equations, and decide whether a number is a solution of a linear equation.
If the variable in an equation can be replaced by a real number that makes the statement true, then that number is a solution of the equation.

An equation is solved by finding its solution set, the set of all solutions

Equivalent equations are related equations that have the same solution set.

## Objective 3

## Solve linear equations by using the addition and multiplication properties of equality.

Solve linear equations by using the addition and multiplication properties of equality.

```
    Addition and Multiplication Properties of Equality
            Addition Property of Equality
For all real numbers }A,B\mathrm{ , and }C\mathrm{ , the equations
    A=B and A+C=B+C
are equivalent.
That is, the same number may be added to each side of an
equation without changing the solution set.
    Multiplication Property of Equality
For all real numbers }A\mathrm{ , and }B\mathrm{ , and for }C\not=0\mathrm{ , the equations
    A=B and AC=BC
are equivalent.
That is, each side of the equation may be multiplied by the same
nonzero number without changing the solution set.
```

Slide 2.

CLASSROOM EXAMPLE 2

Using the Properties of Equality to Solve a Linear Equation (cont'd)
Check $x=2$ in the original equation.


Solve linear equations by using the addition and multiplication properties of equality.

Solving a Linear Equation in One Variable

```
Step 1 Clear fractions or decimals. Eliminate fractions by
    multiplying each side by the least common denominator.
    Eliminate decimals by multiplying by a power of 10.
Step 2 Simplify each side separately. Use the distributive
    property to clear parentheses and combine like terms as needed.
Step 3 Isolate the variable terms on one side. Use the addition property to get all terms with variables on one side of the equation and all numbers on the other.
Step 4 Isolate the variable. Use the multiplication property to get an equation with just the variable (with coefficient 1) on one side.
Step 5 Check. Substitute the proposed solution into the original equation.
```


## Objective 4

Solve linear equations by using the distributive property.

CLASSROOM Using the Distributive Property to Solve a Linear Equation
Solve.
$6-(4+x)=8 x-2(3 x+5)$
Solution:
Step 1 Since there are no fractions in the equation, Step 1 does not apply

Step 2 Use the distributive property to simplify and combine like terms on the left and right.

$$
6-(1) 4-(1) x=8 x-2(3 x)+(-2)(5) \quad \text { Distributive property. }
$$

$$
6-4-x=8 x-6 x-10
$$

Multiply.
$2-x=2 x-10 \quad$ Combine like terms.

CLASSROOM EXAMPLE 3

Using the Distributive Property to Solve a Linear Equation (cont'd)
Step 3 Next, use the addition property of equality.

$$
\begin{aligned}
2-2-x & =2 x-10-2 & & \text { Subtract } 2 . \\
-x & =2 x-12 & & \text { Combine like terms. } \\
-x-2 x & =2 x-2 x-12 & & \text { Subtract } 2 x \\
-3 x & =-12 & & \text { Combine like terms. }
\end{aligned}
$$

Step 4 Use the multiplication property of equality to isolate $x$ on the left side.

$$
\begin{gathered}
\frac{-3 x}{-3}=\frac{-12}{-3} \\
x=4
\end{gathered}
$$

CLASSROOM Using the Distributive Property to Solve a Linear Equation (cont'd)
EXAMPLE 3
Step 5 Check. $6-(4+x)=8 x-2(3 x+5)$

$$
\begin{aligned}
6-(4+4) & =8(4)-2(3(4)+5) \\
6-8 & =32-2(12+5) \\
-2 & =32-2(17) \\
-2 & =32-34 \\
-2 & =-2 \quad \text { True }
\end{aligned}
$$

The solution checks, so $\{4\}$ is the solution set.

## CLASSROOM Solving a Linear Equation with Fractions EXAMPLE 4

Solve.
$\frac{x+1}{2}+\frac{x+3}{4}=\frac{1}{2}$
Solution:
Step 1 Start by eliminating the fractions. Multiply both sides by the LCD

$$
4\left(\frac{x+1}{2}+\frac{x+3}{4}\right)=4\left(\frac{1}{2}\right)
$$

Step 2

$$
\begin{aligned}
4\left(\frac{x+1}{2}\right)+4\left(\frac{x+3}{4}\right) & =4\left(\frac{1}{2}\right) \\
& \text { Distributive property. } \\
\frac{4(x+1)}{2}+\frac{4(x+3)}{4} & =2
\end{aligned} \quad \text { Multiply; 4. }
$$

$$
\begin{aligned}
\frac{4(x+1)}{2}+\frac{4(x+3)}{4} & =2 & & \\
2(x+1)+x+3 & =2 & & \\
2(x)+2(1)+x+3 & =2 & & \text { Distributive property. } \\
2 x+2+x+3 & =2 & & \text { Multiply. } \\
3 x+5 & =2 & & \text { Combine like terms. }
\end{aligned}
$$

Step 3

$$
3 x+5-5=2-5 \quad \text { Subtract } 5
$$

$$
3 x=-3 \quad \text { Combine like terms. }
$$

Step 4

$$
\begin{aligned}
\frac{3 x}{3} & =\frac{-3}{3} \quad \text { Divide by } 3 \\
x & =-1
\end{aligned}
$$

CLASSROOM
EXAMPLE 4 Step 5 Check

$$
\begin{aligned}
\frac{(x+1)}{2}+\frac{(x+3)}{4} & =\frac{1}{2} \\
\frac{(x+1)}{2}+\frac{(x+3)}{4} & =\frac{1}{2} \\
\frac{(-1+1)}{2}+\frac{(-1+3)}{4} & =\frac{1}{2} \\
\frac{0}{2}+\frac{2}{4} & =\frac{1}{2} \\
\frac{1}{2} & =\frac{1}{2}
\end{aligned}
$$

The solution checks, so the solution set is $\{-1\}$.

| CLASSROOM |  |
| :--- | :--- |
| EXAMPLE 5 | Solving a Linear Equation with Decimals |

Solve.
$0.02(60)+0.04 x=0.03(50+x)$
Solution:

$$
\begin{aligned}
2(60)+4 x & =3(50+x) \\
120+4 x & =150+3 x \\
120-120+4 x & =150-120+3 x \\
4 x & =30+3 x \\
4 x-3 x & =30+3 x-3 x \\
x & =30
\end{aligned}
$$

Since each decimal number is given in hundredths, multiply both sides of the equation by 100 .

## Objective 6 <br> Identify conditional equations, contradictions, and identities.

Identify conditional equations, contradictions, and identities.

| Type of <br> Linear <br> Equation <br> Conditional | Number of <br> Solutions | Indication when Solving |
| :--- | :--- | :--- |
| Identity | Infinite; <br> Solution set <br> \{all real | Final line is $x=$ a number. |
|  | numbers |  |
| Contradiction line is true, such as $0=0$. |  |  |
|  | None; solution <br> set $\varnothing$ | Final line is false, such as <br> $-15=-20$. |

CLASSROOM
EXAMPLE 6
Recognizing Conditional Equations, Identities, and Contradictions

Solve each equation. Decide whether it is a conditional equation, an identity, or a contradiction.
$5(x+2)-2(x+1)=3 x+1$
Solution:

$$
\begin{aligned}
5 x+10-2 x-2 & =3 x+1 \\
3 x+8 & =3 x+1 \\
3 x-3 x+8 & =3 x-3 x+1 \\
8 & =1 \quad \text { False }
\end{aligned}
$$

The result is false, the equation has no solution. The equation is a contradiction. The solution set is $\varnothing$

CLASSROOM
EXAMPLE 6
$\frac{x+1}{3}+\frac{2 x}{3}=x+\frac{1}{3}$
Solution:

$$
\begin{aligned}
3\left(\frac{x+1}{3}\right)+3\left(\frac{2 x}{3}\right) & =3\left(x+\frac{1}{3}\right) \\
x+1+2 x & =3 x+1 \\
3 x+1 & =3 x+1
\end{aligned}
$$

This is an identity. Any real number will make the equation true. The solution set is \{all real numbers\}.

CLASSROON
EXAMPLE 6
Recognizing Conditional Equations, Identities, and Contradictions (cont'd)
$5(3 x+1)=x+5$
Solution:

$$
\begin{aligned}
15 x+5 & =x+5 \\
15 x-x+5 & =x-x+5 \\
14 x+5 & =5 \\
14 x+5-5 & =5-5 \\
14 x & =0 \\
x & =0
\end{aligned}
$$

This is a conditional equation. The solution set is $\{0\}$.

