```
2.2) Formulas and Percent
Objectives
1 Solve a formula for a specified variable.
2 Solve applied problems by using formulas.
3 Solve percent problems.
4 Solve problems involving percent increase or decrease.
```


Formulas and Percent

A mathematical model is an equation or inequality that describes a real situation. Models for many applied problems, called formulas, already exist. A formula is an equation in which variables are used to describe a relationship.

A few commonly used formulas are:

$$
\begin{array}{cccc}
d=r t, \quad l=p r t, & A=\frac{1}{2} b h, \quad \text { and } & P=2 L+2 W \\
\text { Distance } & \begin{array}{c}
\text { Interest }
\end{array} & \begin{array}{c}
\text { Area of a } \\
\text { Formula } \\
\text { Formula } \\
\text { Formula }
\end{array} & \begin{array}{c}
\text { Perimeter } \\
\text { of a } \\
\text { Rectangle } \\
\text { Formula }
\end{array}
\end{array}
$$

Solve a formula for a specified variable.

When solving for a specified variable, the key is to treat that variable as if it were the only one. Treat all other variables like numbers (constants).

Solving for a Specified Variable

Step 1 If the equation contains fractions, multiply both sides by the LCD to clear the fractions

Step 2 Transform so that all terms containing the specified variable are on one side of the equation and all terms without that variable are on the other side.

Step 3 Divide each side by the factor that is the coefficient of the specified variable.

Objective 1

Solve a formula for a specified variable.

CLASSROOM

Solve the formula $d=r t$ for r.
Solution:
Solve the formula by isolating the r on one side of the equals sign.

$$
\begin{aligned}
\frac{d}{t} & =\frac{r t}{t} \quad \text { Divide by } 2 \\
r & =\frac{d}{t}
\end{aligned}
$$

CLASSROOM
EXAMPLE 2
Solving for a Specified Variable
Solve the formula for L.
$P=2 L+2 W$
Solution:

$$
\begin{aligned}
P-2 W & =2 L+2 W-2 W & & \text { Subtract 2W from both si } \\
P-2 W & =2 L & & \text { Combine like terms. } \\
\frac{P-2 W}{2} & =\frac{2 L}{2} & & \begin{array}{l}
\text { Divide both sides by } \mathbf{2} \text { to } \\
\text { isolate } L .
\end{array} \\
L & =\frac{P-2 W}{2} & &
\end{aligned}
$$

$$
\left.\begin{array}{l}
\begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 3
\end{array} \\
\text { Solve the equation for } x . \\
y=\frac{1}{2}(x+3) \\
\text { Solution: } \\
y=\frac{x}{2}+\frac{3}{2} \\
2 y=x+3 \\
\begin{array}{l}
\text { Use distributive property on the } \\
\text { right side to eliminate the } \\
\text { parentheses. }
\end{array} \\
2 y-3=x \text { or } \quad x=2 y-3
\end{array} \begin{array}{l}
\text { Multiply both sides by } 2 \text { to } \\
\text { eliminate fractions. }
\end{array}\right\} \text { Subtract } 3 \text { from both sides. } \begin{aligned}
& \text { Sorming Parentheses }
\end{aligned}
$$

CLASSROOM	
EXAMPLE 4	Solving an Equation for One of the Variables

Solve the equation for y.
$2 x+7 y=5$

Solution:

$$
2 x+7 y-2 x=5-2 x \quad \text { Subtract } 2 x \text { from both sides. }
$$

$$
7 y=5-2 x \quad \text { Combine like terms. }
$$

$$
y=\frac{5-2 x}{7} \quad \text { Divide both sides by } 7
$$

Objective 2

Solve applied problems by using formulas.

CLASSROOM
 EXAMPLE 5
 Finding Average Rate

It takes James Harmon one third of an hour to travel 15 miles. What is his average rate?

Solution:

Find the rate by using the formula $d=r t$ and solving for r.

$$
\begin{aligned}
& 15=r \cdot \frac{1}{3} \quad \text { Multiply both sides by } 3 . \\
& 45=r
\end{aligned}
$$

Average rate of speed is 45 mph .

Solve percent problems.

An important everyday use of mathematics involves the concept of percent. Percent is written with the symbol \%. The word percent means "per one hundred".

$$
1 \%=0.01 \quad \text { or } \quad 1 \%=\frac{1}{100}
$$

Solving a Percent Problem

Let a represent a partial amount of b, the base, or whole amount. Then the following equation can be used to solve a percent problem.
partial amount a
base b

CLASSROOM
EXAMPLE 6
Solve each problem.

A mixture of gasoline oil contains 20 oz, of which 1 oz is oil. What percent of the mixture is oil?

Solution:

The whole amount of mixture is 20 oz . The part that is oil is $\mathbf{1 ~ o z}$.

$$
\begin{aligned}
& x=\frac{1}{20} \longleftarrow \text { partial amount } \\
& x=0.05, \text { or } 5 \% .
\end{aligned}
$$

Thus, 5% of the mixture is oil.

CLASSROOM	
EXAMPLE 6	Solving Percent Problems (cont'd)

An automobile salesman earns an 8\% commission on every car he sells. How much does he earn on a car that sells for $\$ 12,000$?

Solution:

Let x represent the amount of commission earned $8 \%=8 \cdot 0.01=0.08$

$$
\begin{array}{rlrl}
\frac{x}{12,000} & =0.08 & \frac{\text { partial }}{\text { whole }}=\text { percent } \\
x & =0.08(12,000) & & \text { Multiply by } 12,000 . \\
x & =960 &
\end{array}
$$

The salesman earns $\$ 960$.

CLASSROOM

In 2007, Americans spent about $\$ 41.2$ billion on their pets. Use the graph to determine how much was spent on pet supplies/medicine? Round your answer to the nearest tenth of a billion dollars

Solution:

Let \boldsymbol{x} represent the amount spent on pet supplies/medicine.

$$
\begin{aligned}
\frac{x}{41.2} & =0.238 \\
x & =0.238(41.2) \\
x & =9.8056
\end{aligned}
$$

Therefore, about $\$ 9.8$ billion was spent on pet supplies/medicine.

Solve problems involving percent increase or decrease

Percent is often used to express a change in some quantity. To solve problems of this type, we use the following form of the percent equation.

$$
\text { percent change }=\frac{\text { amount of change }}{\text { base }}
$$

CLASSROOM

A cost-of-living salary increase resulted in Keith's monthly salary to go from $\$ 1300$ to $\$ 1352$. What percent increase was this?

Solution:
Let x represent the percent increase in salary.

$$
\begin{aligned}
\text { percent increase } & =\frac{\text { amount of change }}{\text { base }} \\
x & =\frac{1352-1300}{1300} \\
x & =\frac{52}{1300} \\
x & =0.04
\end{aligned}
$$

The increase in salary was 4\%.

CLASSROOM EXAMPLE 8

The price of a concert ticket was changed from $\$ 54.00$ to $\$ 51.30$
What percent decrease was this?
Solution:
Let \boldsymbol{x} represent the percent decrease in ticket price.

$$
\begin{aligned}
\text { percent decrease } & =\frac{\text { amount of change }}{\text { base }} \\
x & =\frac{54.00-51.30}{54.00} \\
x & =\frac{2.70}{54.00} \\
x & =0.05
\end{aligned}
$$

The decrease in ticket price was 5\%.

