2.4 Further Applications of Linear Equations

Objectives
1 Solve problems about different denominations of money.
2 Solve problems about uniform motion.

3 Solve problems about angles

Objective 1

Solve problems about different denominations of money.

Solve problems about different denominations of money
 PROBLEM-SOLVING HINT

In problems involving money, use the basic fact that

$$
\begin{aligned}
& \text { Number of monetary } \times \text { denomination }=\text { total monetary } \\
& \text { units of the same kind value } \\
& \text { For example, } 30 \text { dimes have a monetary value of 30(\$0.10) = \$3.00 } \\
& \text { Fifteen 5-dollar bills have a value of } 15(\$ 5)=\$ 75 \text {. }
\end{aligned}
$$

CLASSROOM

Step 1 Read the problem. What is being asked?
To find the number of each denomination of coin. What is given?

The total number of coins and the total value.

Step 2 Assign a variable. Then, organize a table
Let $x=$ the number of dimes.
Let $26-\boldsymbol{x}=$ number of half-dollars

| CLASSROOM
 EXAMPLE 1 | Solving a Money Denomination Problem (cont'd) |
| :---: | :---: | :---: |

Step 3 Write an equation
$0.10 x+0.50(26-x)=8.60$

CLASSROOM
EXAMPLE 1
Step 4 Solve

Step 5 State the answer
He has 11 dimes and 26-11 = 15 half-dollars

Step 6 Check.
He has $11+15=26$ coins, and the value is $\$ 0.10(11)+\$ 0.50(15)=\$ 8.60$

Be sure that your answer is reasonable when you are working with Be sure that your answer is reasonable when you are working with
problems like this. Because you are working with coins, the correct answer can be neither negative nor a fraction.

Solve problems about uniform motion.

PROBLEM-SOLVING HINT
Uniform motion problems use the distance formula, $d=r t$. When rate (or speed) is given in miles per hour, time must be given in hours. Draw a sketch to illustrate what is happening. Make a table to summarize the given information.

CLASSROOM

Two cars leave the same town at the same time. One travels north at 60 mph and the other south at 45 mph . In how many hours will they be 420 mi apart?
Solution:
Step 1 Read the problem. What is to be found?
The time for the cars to be 420 miles apart. What information is given? Both their speeds and the distance between them.

Step 2 Assign a variable. Make a sketch to illustrate the situation. Let $x=$ the amount of time needed for the cars to be 420 mi apart.

CLASSROOM
Solving a Motion Problem (Motion in the Same Direction) EXAMPLE 3

When Chris drives his car to work, the trip takes $1 / 2 \mathrm{hr}$. When he rides the bus, it takes $3 / 4 \mathrm{hr}$. The average rate of the bus is 12 mph less than his rate when driving. Find the distance he travels to work.

Solution:

Step 1 Read the problem. What is to be found?
The distance Chris travels to his workplace.
What is given?
The time it takes Chris to drive, the time it takes the bus to arrive and the average rate for the bus relative to driving.

Step 2 Assign a variable.
Let $x=$ the average rate of the car.
Then, $x-12=$ average rate of the bus.

CLASSROOM
EXAMPLE 2
Step 4 Solve
Solving a Motion Problem (Motion in Opposite Directions) (cont'd)

$$
\begin{aligned}
60 x+45 x & =420 \\
105 x & =420 \\
x & =\frac{420}{105}=4
\end{aligned}
$$

Step 5 State the answer.
The cars will be 420 mi apart in 4 hr .
Step 6 Check.

$$
\begin{aligned}
60(4)+45(4) & =420 \\
240+180 & =420 \\
420 & =420
\end{aligned}
$$

It is a common error to write 420 as the distance traveled by each ca However, 420 is total distance traveled by both cars.

Slide 2.4-10

CLASSROOM EXAMPLE 3	Solving a Motion Problem (Motion in the Same Direction) (cont'd)		
Rate Time Car x $1 / 2$ Bustance Bus $x-12$ $3 / 4$ $1 / 2(x-12)$		$.$	Same
:---:			

Step 3 Write an equation.

$$
1 / 2 x=3 / 4(x-12)
$$

Step 4 Solve.

$$
\begin{aligned}
\frac{1}{2} x & =\frac{3}{4}(x-12) \\
2 x & =3(x-12) \quad \text { Multiply by } 4 . \\
2 x & =3 x-36 \\
36 & =x
\end{aligned}
$$

CLASSROOM EXAMPLE 3 Solving a Motion Problem (Motion in the Same Direction) (cont'd)

Step 5 State the answer
The required distance is
$d=\frac{1}{2} x=\frac{1}{2}(36)=18$ miles.
Step 6 Check
$d=\frac{3}{4}(x-12)$
$d=\frac{3}{4}(36-12)$
$d=\frac{3}{4}(24)$

$$
d=18 \text { miles }
$$

Solve problems about angles.

Solve problems about uniform motion.

PROBLEM-SOLVING HINT

As in Example 3, sometimes it is easier to let the variable represent a quantity other than the one that we are asked to find. It takes practice to learn when this approach works best

CLASSROOM	Finding Angle Measures
EXAMPLE 4	

Find the value of x, and determine the measure of each angle
Solution:
Step 1 Read the problem. What is
to be found?
The measure of each angle What is given?
The expression for each angle

relative to one another and the knowledge that the sum of all three angles combined is 180.

Step 2 Assign a variable.
Let $x=$ the measure of one angle.

An important result of Euclidean geometry is that the sum of the angle measures of any triangle is 180°

Objective 3

Solve problems about angles.

CLASSROOM
 EXAMPLE 4
 Finding Angle Measures (cont'd)

Step 3 Write an equation. The sum of the three measures shown in the figure must be 180°.

$$
x+(x+61)+(2 x+7)=180
$$

Step 4 Solve

$$
\begin{aligned}
4 x+68 & =180 \\
4 x & =112 \\
x & =28
\end{aligned}
$$

Step 5 State the answer.

The angles measure $28^{\circ}, 28+61=89^{\circ}$, and $2(28)+7=63^{\circ}$.

Step 6 Check.

$$
28^{\circ}+89^{\circ}+63^{\circ}=180^{\circ}
$$

