

01 40000004		
EXAMPLE 1	Distinguishing between Expressions and Equation	ons
Decide whether e	each of the following is an <i>equation</i> or an <i>expres</i>	sion.
	Solution:	
9x + 10 = 0	equation	
9 <i>x</i> + 10	expression	
Convright © 2012, 2008, 2004, Pea	rson Education. Inc	Slide 2.1- 3

Identify linear equations, and decide whether a number is a solution of a linear equation. Linear Equation in One Variable A linear equation in one variable can be written in the form Ax + B = C, where A, B, and C are real numbers, with $A \neq 0$.

A linear equation is a $first-degree \ equation,$ since the greatest power on the variable is 1.

Objective 3

Solve linear equations by using the addition and multiplication properties of equality.

Slide 2

Solve linear equa multiplication pro	tions by using the addition and perties of equality.
Addition and I	Multiplication Properties of Equality
Ad	dition Property of Equality
For all real numbers	A, B, and C, the equations
A = B	and $A + C = B + C$
are equivalent.	
That is, the same nu equation without ch	umber may be added to each side of an hanging the solution set.
Multi	plication Property of Equality
For all real numbers	A, and B, and for $C \neq 0$, the equations
A = B	and $AC = BC$
are equivalent.	
That is, each side o nonzero number wi	f the equation may be multiplied by the same ithout changing the solution set.

CLASSROOM EXAMPLE 2	Using the Properties of	Equality to Solve a Linear Equa	ation
Solve.			
4x + 8x = -9 + 1	7 <i>x</i> – 1		
Solution:			
The goal is to is	olate x on one side c	f the equation.	
12x	r = −10 + 17 <i>x</i>	Combine like terms.	
12 <i>x</i> – 17 <i>x</i>	= -10 + 17 <i>x</i> - 17 <i>x</i>	Subtract 17 <i>x</i> from each s	ide.
<u>-5x</u> -5	= <u>-10</u> -5	Divide each side by -5.	
x	= 2		
Check x = 2 in the	he original equation.		
Convright © 2012, 2008, 2004, Pe	arson Education. Inc		Slide 2.1- 9

CLASSPOOM		
EXAMPLE 3	Using the Distributive Property	to Solve a Linear Equation
Solve.		
6 - (4 + x) = 8x - Solution:	2(3 <i>x</i> + 5)	
Step 1 Since then apply.	re are no fractions in the equa	ation, Step 1 does not
Step 2 Use the d terms on	istributive property to simplify the left and right.	and combine like
6 - (1)4 -	(1)x = 8x - 2(3x) + (-2)(5)	Distributive property.
6 - 4	4 - x = 8x - 6x - 10	Multiply.
:	2 - x = 2x - 10	Combine like terms.
Convright © 2012, 2008, 2004, Pes	rson Education Inc	Slide 2.1- 13

CLASSROOM EXAMPLE 3	Using the Distributive Property to Solve a Linear Equation	ı (cont'd)
Step 5 Check. 6	-(4 + x) = 8x - 2(3x + 5)	
6 -	-(4+4) = 8(4) - 2(3(4) + 5)	
	6 - 8 = 32 - 2(12 + 5)	
	-2 = 32 - 2(17)	
	-2 = 32 - 34	
	-2 = -2 True	
The solution che	ecks, so {4} is the solution set.	
Convright © 2012-2008-2004 Pea	rson Education Inc	Slide 2.1- 1

CLAS EXAI	SROOM NPLE 4	Solving a Linear Equation	with Fractions (cont'd)
		$\frac{4(x+1)}{2} + \frac{4(x+3)}{4} = 2$	
		$2^{2} + 4^{2}$ $2(x+1) + x + 3 = 2$	
		2(x) + 2(1) + x + 3 = 2	Distributive property.
		2x + 2 + x + 3 = 2	Multiply.
		3x + 5 = 2	Combine like terms.
Step 3		3x + 5 - 5 = 2 - 5	Subtract 5.
		3x = -3	Combine like terms.
Step 4		$\frac{3x}{3} = \frac{-3}{3}$	Divide by 3.
		x = -1	
Copyright © 201	2. 2008. 2004 Pe	arson Education. Inc.	Slide 2.1- 17

CLASSROOM EXAMPLE 4	Solving a Linear Equation with Fractions	(cont'd)
Step 5 Check.		
	$\frac{(x+1)}{2} + \frac{(x+3)}{4} = \frac{1}{2}$ $\frac{(x+1)}{4} + \frac{(x+3)}{4} = \frac{1}{2}$	
	$\frac{(-1+1)}{2} + \frac{(-1+3)}{4} = \frac{1}{2}$	
	$\frac{0}{2} + \frac{2}{4} = \frac{1}{2}$	
	2 4 2	
	$\frac{1}{2} = \frac{1}{2}$	
The solution che	ecks, so the solution set is {-1}.	
Copyright © 2012, 2008, 2004 Per	arson Education. Inc.	Slide 2.1- 18

Type of Linear Equation	Number of Solutions	Indication when Solving
Conditional	One	Final line is $x = a$ number.
Identity	Infinite; solution set {all real numbers}	Final line is true, such as 0 = 0.
Contradiction	None; solution set \varnothing	Final line is false, such as $-15 = -20$.

 Objective 1

 Solve a formula for a specified variable.

CLASSROOM EXAMPLE 1	Solving for a Specified Variable	
Solve the formula	d = rt for r .	
Solution:		
Solve the formu	Ia by isolating the r on one side of the equ	als
sign.	, , , , , , , , , , , , , , , , , , , ,	
	d rt	
	$\underline{-} = \underline{-}$ Divide by 2.	
	d	
	r = -	

Verbal Expression	Mathematical Expression (where x and y are numbers)
Addition	
The sum of a number and 7	x + 7
6 more than a number	<i>x</i> + 6
3 plus a number	3 + <i>x</i>
24 added to a number	<i>x</i> + 24
A number increased by 5	x + 5
The sum of two numbers	x + y

Verbal Expression	Mathematical Expression (where x and y are numbers)
Subtraction	
2 less than a number	x-2
2 less a number	2 – <i>x</i>
12 minus a number	12 – <i>x</i>
A number decreased by 12	x - 12
A number subtracted from 10	10 <i>- x</i>
From a number, subtract 10	x-10
The difference between two numbers	x - y

Verbal Expression	Mathematical Expressior (where x and y are numbers)
Multiplication	
16 times a number	16 <i>x</i>
A number multiplied by 6	6 <i>x</i>
2/3 of a number (used with fractions and percent)	$\frac{2}{3}x$
¾ as much as a number	$\frac{-x}{4}$
Twice (2 times) a number	2x
The product of two numbers	xy

Distinguish between simplifying expressions and solving equations. An expression translates as a phrase. An equation includes the = symbol, with expressions on both sides, and translates as a sentence.

CLASSROOM EXAMPLE 4	Finding Unknown Numerical Quantities (cont'd)
Step 5 State the	e answer.
	We let x represent the number of hits for Jeter, so Jeter had 212 hits.
-	Then Suzuki has 2 <i>1</i> 2 + 13, or 225 hits.
Step 6 Check.	
:	225 is 13 more than 212, and 212 + 225 = 437.
-	The conditions of the problem are satisfied, and our answer checks.
	01:4+ 2 °

In 2002, there were 301 long-distance area codes in the United States, an increase of 250% over the number when the area code plan originated in 1947. How many area codes were there in 1947? (Source: SBC Telephone Directory.)

Solution:

Step 1 Read the problem. What are we being asked to find? The number of area codes in 1947. What are we given?

The number of area codes in 2002 and the percent increase from 1947 to 2002.

Step 2 Assign a variable.

Let x = the number of area codes in 1947. Then, 2.5x represents the number of codes in 2002.

Step 3 Write an equation from the given information. x + 2.5x = 301

Slide 2.3- 18

CLASSROOM EXAMPLE 5	Solving a Percent Problem (cont'd)
Step 4 Solve th	ne equation.
	x + 2.5x = 301
	3.5 <i>x</i> = 301
	$\frac{3.5x}{3.5x} = \frac{301}{3.5x}$
	3.5 3.5
	x = 86
Step 5 State th	te answer. The number of area codes in 1947 was 86 and the increase in the number of area codes between 1947 and 2002 was 215 (2.5 X 86).
Step 6 Check.	
	86 area codes in 1947 + an increase of 215 codes = 301 total area codes by 2002
onvright @ 2012 2008 2004 F	Version Education Inc. Slide 2.3-19

	CLASSROOM EXAMPLE 6	Solving an Investment Problem		CLASSROO EXAMPLE	M Se	olving an Investment Pr	oblem (cont'd)	
A ai F	man has \$34,0 nd the balance a ind the amount i	00 to invest. He invests some of the money at 5% at 4%. His total annual interest income is \$1545. invested at each rate.	,	Step 2 Assig	gn a va nation.	riable. Use a table to orga	anize the given	
S	olution:			Prin	ncipal	Rate (as a decimal)	Interest	
s	tep 1 Read the	e problem. What is to be found?		x		0.05	0.05 <i>x</i>	
	V	Ne must find the two amounts; the amount investe	ed	34,0)00 – x	0.04	0.04(34,000 - x)
	а	at 5% and the amount invested at 4%.		34,0	000	XXXXXXXXX	1545	
	What info	ormation is given?		Step 3 Write	an equ	lation.		
	Т	The total to invest and the interest earned.		•	The	formula for simple interes	it is $I = prt$.	
s	tep 2 Assign a	a variable.			Here	the time is 1 yr.		
	L	Let $x =$ the amount to invest at 5%			0.05	x + 0.04(34.000 - x) = 15	45	
	3	34,000 - x = the amount to invest at 4%			0.00	x + 0.04(04,000 x) = 10	-10	
				interes	st at 5%	+ interest at 4% = t	otal interest	
Convri	oht © 2012 2008 2004 Pea	arson Education. Inc	Slide 2.3- 21	Convright © 2012, 2008, 200	04 Pearson E	ducation Inc		Slide 2.3- 22

Slide 2.3

PROBLEM-SOLVING HINT In the Example 6, we chose to let the variable x represent the amount invested at 5%. It would have also been acceptable to let x represent the amount invested at 4% instead. The equation to solve would have been different, but in the end the answers would be the same.

Solve investment problems.

Solve mixture problems.

CLASSROOM EXAMPLE 7	Solving	a Mixture Probler	n
How many poun of candy worth \$ Solution:	ds of candy 4 per lb to	/ worth \$8 per lb sh get a mixture that c	ould be mixed with 10 an be sold for \$7 per l
Step 1 Read the	e problem.	What is to be found	1?
-	How much	candy worth \$8 pe	r lb is to be used.
What is	given?		
-	- The amour	nt used at \$4 per lb	and the selling price
1	per pound.		01
Step 2 Assign a	a variable.		
!	_et x = the	amount of \$8 per lt	o candy.
Num	ber of ounds	\$ Amount	Pounds of Candy worth \$7
1	00	\$4	100(4) = 400
	x	\$8	8 <i>x</i>
		ሱን	7(100 +))

Slide 2.3- 25

Slide 2.3- 29

CLAS: EXAN	SROOM MPLE 8	Solving	a Mixture Problem Whe	en One Ingredient is
How mu reduce Solutio	uch water it to 40% a n:	must be antifreez	added to 20 L of 50% a e?	antifreeze solution t
Step 1	Read the	problen	n. What is to be found?	
	١	Vhat am	ount of pure water is to	be added.
	What is q	iven?		
	т	he amoi	int of antifreeze and its	nurity percentage
Step 2	Assign a	variable et x = th	 Use a table. number of liters of pu 	re water.
	Numb li	er of ters	Percent (as a decimal)	Liters of Pure Antifreeze
	х		0	0
	20)	0.5	20(0.5)
	1			

2008, 2004 Pearson Education, In

Solve problems about different denominations of money.

PROBLEM-SOLVING HINT

In problems involving money, use the basic fact that

Number of monetary units of the same kind × denomination = total monetary value

For example, 30 dimes have a monetary value of 30(\$0.10) = \$3.00. Fifteen 5-dollar bills have a value of 15(\$5) = \$75.

CLASSROOM EXAMPLE 1 Solving a Money Denomination Problem Mohammed has a box of coins containing only dimes and half-dollars. There are 26 coins, and the total value is \$8.60. How many of each denomination of coin does he have? Solution: Step 1 Read the problem. What is being asked? To find the number of each denomination of coin. What is given? The total number of coins and the total value. Step 2 Assign a variable. Let x = the number of dimes. Let 26 - x = number of half-dollars.

Slide 2.4- 3

CLASSROOM EXAMPLE 1	Solving a Mone	y Denominati	on Problem (cont'd
Number of Coins	Denominations	Value	Multiply the number of coins
x	0.10	0.10 <i>x</i>	denominations,
26 – <i>x</i>	0.50	0.50(26 - x)	and add the results to get
XXXXXXX	Total	8.60	→ 8.60
Step 3 Write an	n equation. 0.10 <i>x</i> + 0.50(26 – <i>x</i>) = 8.60	
Step 3 Write an	n equation. 0.10 <i>x</i> + 0.50(26 – <i>x</i>) = 8.60	

CLASSROOM Solve problems about uniform motion. Solving a Motion Problem (Motion in Opposite Directions) EXAMPLE 2 PROBLEM-SOLVING HINT Two cars leave the same town at the same time. One travels north at $60 \mbox{ mph}$ and the other south at $45 \mbox{ mph}.$ In how many hours will they be Uniform motion problems use the distance formula, *d* = *rt*. When rate 420 mi apart? (or speed) is given in miles per hour, time must be given in Solution: hours. Draw a sketch to illustrate what is happening. Make a table Step 1 Read the problem. What is to be found? to summarize the given information. The time for the cars to be 420 miles apart. What information is given? Both their speeds and the distance between them. Step 2 Assign a variable. Make a sketch to illustrate the situation. Let x = the amount of time needed for the cars to be 420 mi apart. 45 mph 60 mph Starting N Total distance = 420 miles Slide 2 Slide 2.4-

Northbound Car60x60xSouthbound Car45x45xXXXXXXXXXXXXXXXX420Totaltep 3 Write an equation. $60x + 45x = 420$		Rate	Time	Distance	
Southbound Car45 x 45xXXXXXXXXXXXXXXXX420tep 3 Write an equation. $60x + 45x = 420$	Northbound Ca	r 60	x	60 <i>x</i>	
XXXXXXXXXXXX420Totaltep 3 Write an equation. $60x + 45x = 420$	Southbound Ca	r 45	x	45 <i>x</i>	
tep 3 Write an equation. 60x + 45x = 420	XXXXXXX	XXXXX	XXXXX	420	Tota
	tep 3 Write an 6	equation. 0x + 45x = 420			
	tep 3 Write an 66	equation . 0x + 45x = 420			_
	tep 3 Write an 6	equation . 0 <i>x</i> + 45 <i>x</i> = 420			

CLASSROOM EXAMPLE 2	Solving a Motion Problem (Motion in Opposite Directions) (co	ont'd)
Step 4 Solve.		
	60x + 45x = 420	
	105 <i>x</i> = 420	
	$x = \frac{420}{105} = 4$	
Step 5 State the	e answer.	
-	The cars will be 420 mi apart in 4 hr.	
Step 6 Check.		
	60(4) + 45(4) = 420	
	240 + 180 = 420	
	420 = 420	
Lt is a comme However, 42	on error to write 420 as the distance traveled by each car. 0 is total distance traveled by both cars.	
ww.right @ 2012 2008 2004 Pe	awan Education Inc.	Slide

Type of Interval	Set-Builder Notation	Interval Notation	Graph		
Open interval	$\{x a \le x \le b\}$	(a, b)) >	
Closed interval	$\{x a \le x \le b\}$	[a, b]	 a		<i>M</i>
Half-open (or half-closed) interval	$ \{ x a \le x < b \} $ $ \{ x a < x \le b \} $	[a, b) (a, b]	 		otice that a renthesis is
Disjoint interval*	$\{x x < a \text{ or } x > b\}$	$(-\infty,a)\cup(b,\infty)$	↔ a	b to	an infinity
Infinite interval	$ \begin{aligned} &\langle x x \geq a \rangle \\ &\langle x x \geq a \rangle \\ &\langle x x < a \rangle \\ &\langle x x \leq a \rangle \end{aligned} $	(a,∞) [a,∞) (-∞, a) (-∞, a]		po	gardless lether it is gative or sitive.
	$\{x x \text{ is a real number}\}$	(-∞,∞)			

CLASSROOM EXAMPLE 1	Using the Addition Prop	erty of Inequality	
Solve $k - 5 > 1$, a Solution:	nd graph the solution set.		
	<i>k</i> – 5 > 1		
	<i>k</i> – 5 + 5 > 1 + 5	Add 5.	
	<i>k</i> > 6		
Substitute 6 for k	in the equation $k - 5 = 1$		
	k - 5 = 1		
	6-5=1	_	
	1 = 1	True	
This shows that 6 side of the 6 to ve inequality true.	is a boundary point. Now te rify that numbers greater ti	est a number on each han 6 make the	
			Slid

Solve linear inequalities by using the addition property.

```
CLASSROOM
                   Using the Addition Property of Inequality
   EXAMPLE 2
Solve 5x + 3 \ge 4x - 1, and graph the solution set.
Solution:
                     5x + 3 - 3 \ge 4x - 1 - 3
                            5x \ge 4x - 4
                        5x - 4x > 4x - 4x - 4
                              x \ge -4
Check:
                         5x + 3 = 4x - 1
                       5(-4) + 3 = 4(-4) - 1
                        -20 + 3 = -16 - 1
                           - 17 = -17
                                                 True
This shows that -4 is a boundary point.
                                                                  Slide 2.
```


CLASSROOM EXAMPLE 4	Solving a Linear Inequality by Using the Distributive Property
Solve $6(x - 1) +$ Solution:	$3x \ge -x - 3(x + 2)$, and graph the solution set.
Step 1 ($5(x-1) + 3x \ge -x - 3(x+2)$
	$6x - 6 + 3x \ge -x - 3x - 6$
	$9x - 6 \ge -4x - 6$
Step 2	$9x - 6 + 4x \ge -4x - 6 + 4x$
	$13x - 6 \ge -6$
	$13x - 6 + 6 \ge -6 + 6$
Step 3	$13x \ge 0$
	$\frac{13x}{13} \ge \frac{0}{13}$ The solution set is the interval [0, ∞).
	$x \ge 0$
www.ight @ 2012 2008 2004 Pe	aron Education Inc. Slide 2.5-13

ical Solution Set	Graph of Solution Set
(2)	
(2)	¢ 2
(-∞, 2)	2
(2,∞)	2
	(-∞, 2) (2,∞)

CLASSR EXAMP	DOM Using a Li	near Inequality to Solve a Rental Problem
A rental co Marge Ru driveway a use the re Solution:	mpany charges \$5 f nberg can spend no ind pool deck. What nted leaf blower?	to rent a leaf blower, plus \$1.75 per hr. more than \$26 to blow leaves from her is the maximum amount of time she can
Step 1 R	ad the problem aga	in. What is to be found?
	The maximum	time Marge can afford to rent the blower.
W	hat is given?	
	The flat rate to hourly charge maximum amo	o rent the leaf blower, the additional to rent the leaf blower, and the ount that Marge can spend.
Step 2 As	sign a variable.	
	Let h = the nu	mber of hours she can rent the blower.

Step 3 Write a	in inequality.		
	She must pay and no more f	[,] \$5, plus \$1.75 p than \$26.	er hour for <i>h</i> hours
	Cost of renting	is no more than	26
	5 + 1.75h	5	26
Step 4 Solve.		1.75 <i>h</i> ≤ 21	Subtract 5.
		<i>h</i> ≤ 12	Divide by 1.75.
Step 5 State t	he answer.		
	She can use t hours.	the leaf blower fro	om a maximum of 12
Step 6 Check			
	If she uses the	e leaf blower for ?	12 hr, she will spend
	5 + 1.75(12) =	= 26 dollars, the n	naximum.

	Union of Sets
For any two sets is defined as follo	A and <i>B</i> , the union of <i>A</i> and <i>B</i> , symbolized $A \cup B$ ws:
$A \cup B = \{x \mid x \in A\}$	s an element of A or x is an element of B
	AB

 Objective 4

 Solve compound inequalities with the word or.

CLASSROOM EXAMPLE 7	Solving a Compound Inequality with or							
Solve and graph.								
$3x - 2 \le 13$ or $x + 5 \le 7$								
Solution:								
Solve each inequ	uality individually.							
3 <i>x</i> -	$-2 \le 13$ or $x+5 \le 7$							
	$3x \le 15$							
	$x \le 5$ or $x \le 2$							
	$x \le 5$							
-10 -9 -8 -7 -								
$x \leq 2$								
-10 -9 -8 -7	-6-5-4-3-2-1 0 12345678910							
Convright @ 2012 2008 2004 Pea	arson Education Inc. Slide 2.6-19							

CLASSROOM EXAMPLE 8	Solving a Co	mpound Inequalit	y with <i>or</i>
Solve and graph.			
$3x - 2 \le 13$ or	$x + 5 \ge 7$		
Solution:			
Solve each inequ	ality individually		
$3x-2 \leq$	13 or	$x + 5 \ge 7$	
$3x \leq$	≤15		
<i>x</i> ≤	5 or	$x \ge 2$	
$x \le 5$			
-10 -9 -8 -7	-6 -5 -4 -3 -2 -	1012345	6 7 8 9 10
		-	$x \ge 2$
+++++		A 1 2 2 4 5	
-10-9-0-7-	0 -5 -4 -5 -2 -1	U 1 2 3 4 3	0 / 0 9 10
C	Eduction Inc.		Slide 2.6-2

CLASSROOM EXAMPLE 8	Solving	a Comp	oun	d In	equ	ality	wi	th	or	(co	nťd)	
The solution set is or greater than or	s all numbers that are either less than or equal to 5 requal to 2. All real numbers are included.											
The solution set is $(-\infty, -\infty)$.												
	+ + +		++	+	+	+	+	+	+	+	+++	
-10-9-8-7	-6-5-4-	-3 -2 -1	0 1	2	34	5	б	7	8	9	10	
 Convright @ 2012_2008_2004_Pear	son Education In	c									Slide 2	.6- 22

The five highest gro able. List the eleme	ssing domes ents that satis	stic films as of sfy each set.	2009 are listed in this
ive All-Time Highes	t-Grossing D	omestic Films	
Film	Admissions	Gross Income	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gone with the Wind	202,044,600	\$1,450,680,400	
Star Wars	178,119,600	\$1,278,898,700	a to l
The Sound of Music	142,415,400	\$1,022,542,400	AL PRIME
E.T.	141,854,300	\$1,018,514,100	and the second
The Ten Commandments	131,000,000	\$ 940,580,000	4
Source: boxofficemojo.com.			WINNER OF 10 ACADEMY AWA

Objective 3

Solve inequalities of the form |ax + b| < k and of the form |ax + b| > k, for k > 0.

CLASSROOM EXAMPLE 6	Solving an	Equation with Two Absolute Values	
Solve $ 4x - 1 = 3 $	3 <i>x</i> + 5 .		
Solution:			
4x - 1 = 3x + 3x	⊦5 or	4x - 1 = -(3x + 5)	
4x - 6 = 3x	or	4x - 1 = -3x - 5	
- 6 = - <i>x</i>	or	7x = -4	
<i>x</i> = 6	or	$x = -\frac{4}{7}$	
Check that the sc	lution set is	$\left\{-\frac{4}{7},6\right\}.$	
opyright © 2012-2008-2004 Pea	rson Education Inc		Slide 2.7- 15

