Objectives 1 Interpret a line graph. 2 Plot ordered pairs. 3 Find ordered pairs that satisfy a given equation. 4 Graph lines. 5 Find x- and y-intercepts. 6 Recognize equations of horizontal and vertical lines and lines passing through the origin. 7 Use the midpoint formula.

Completing Ordered Pairs and Making a Table (cont'd) EXAMPLE 1 Complete the table of ordered pairs for 3x - 4y = 12. Solution: -3 0 4 0 -2 -6

CLASSROOM

c. (___, -2) Replace y with -2 in the equation to find x. 3x - 4y = 123x - 4(-2) = 123x + 8 = 123x = 4

CLASSROOM Completing Ordered Pairs and Making a Table (cont'd) EXAMPLE 1 Complete the table of ordered pairs for 3x - 4y = 12. Solution: **d.** (–6, ___) Replace x with -6 in the equation to find y. 0 -3 3x - 4y = 124 0 3(-6) - 4y = 12-2 -18 - 4y = 12-6 -4y = 30

Graph lines.

The graph of an equation is the set of points corresponding to all ordered pairs that satisfy the equation. It gives a "picture" of the equation.

Linear Equation in Two Variables

A linear equation in two variables can be written in the form

$$Ax + By = C$$

where A, B, and C are real numbers and A and B not both 0. This form is called standard form.

Find x- and y- intercepts.

A straight line is determined if any two different points on a line are known. Therefore, finding two different points is enough to graph the

The **x-intercept** is the point (if any) where the line intersects the xaxis; likewise, the y-intercept is the point (if any) where the line intersects the y-axis.

Find x- and y- intercepts.

Finding Intercepts

When graphing the equation of a line, find the intercepts as follows.

Let y = 0 to find the x-intercept.

Let x = 0 to find the y-intercept.

While two points, such as the two intercepts are sufficient to graph a straight line, it is a good idea to use a third point to guard against errors.

Recognize equations of horizontal and vertical lines and lines passing through the origin.

A line parallel to the x-axis will not have an x-intercept. Similarly, a line parallel to the y-axis will not have a y-intercept.

Slide 3 1- 13

Use the midpoint formula.

Midpoint Formula

If the endpoints of a line segment PQ are (x_1, y_1) and (x_2, y_2) , its midpoint M is

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right).$$

In the midpoint formula, the small numbers 1 and 2 in the ordered pairs are called **subscripts**, read as "**x-sub-one and y-sub-one**."

Convright © 2012, 2008, 2004, Pearson Education, In

ide 3.1- 17

CLASSROOM EXAMPLE 6 Finding the Coordinates of a Midpoint

Find the coordinates of the midpoint of line segment PQ with endpoints P(-5,8) and Q(2,4).

Solution:

Use the midpoint formula with $x_1 = -5$, $x_2 = 2$, $y_1 = 8$, and $y_2 = 4$:

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{-5 + 2}{2}, \frac{8 + 4}{2}\right)$$
$$= \left(\frac{-3}{2}, \frac{12}{2}\right)$$
$$= (-1.5, 6)$$

Convright © 2012 2008 2004 Pearson Education Inc

Slide 3.1-