3.1 The Rectangular Coordinate System

Objectives

1 Interpret a line graph.
2 Plot ordered pairs.

3 Find ordered pairs that satisfy a given equation.
4 Graph lines.
5 Find x - and y-intercepts.
6 Recognize equations of horizontal and vertical lines and lines passing through the origin.

7 Use the midpoint formula.

Interpret a line graph.

The line graph in the figure to the right presents information based on a method for locating a point in a plane developed by René
Descartes, a $17^{\text {th }}$-century
French mathematician.
Today, we still use this method to plot points and graph linear equations in two variables whose graphs are straight lines.

Plot ordered pairs.

Each of the pair of numbers

$$
(3,2),(-5,6), \text { and }(4,-1)
$$

is an example of an ordered pair.
An ordered pair is a pair of numbers written within parentheses, consisting of a first component and a second component.

We graph an ordered pair by using two perpendicular number lines that intersect at their 0 points, as shown in the plane in the figure to the right. The common 0 point is called the origin

The first number in the ordered pair indicates the position relative to the x-axis, and the second number indicates the position relative to the y-axis.

Plot ordered pairs.

The position of any point in this plane is determined by referring to the horizontal number line, or \boldsymbol{x}-axis, and the vertical number line, or y-axis. The x-axis and the y-axis make up a rectangular (or Cartesian) coordinate system.

The four regions of the graph, shown below, are called quadrants I, II, III, and IV, reading counterclockwise from the upper right quadrant. The points on the x-axis and y-axis to not belong to any quadrant

CLASSROON EXAMPLE 1 Completing Ordered Pairs and Making a Table (cont'd)

Complete the table of ordered pairs for $3 x-4 y=12$.

Solution:

x	y
0	-3
4	0
	-2
-6	

b. (
.
Replace y with 0 in the equation to find x.

$$
\begin{aligned}
3 x-4 y & =12 \\
3 x-4(0) & =12 \\
3 x-0 & =12 \\
3 x & =12 \\
x & =4
\end{aligned}
$$

CLASSROOM	
EXAMPLE 1	Completing Ordered Pairs and Making a Table (cont'd)

Complete the table of ordered pairs for $3 x-4 y=12$.
Solution:

x	y
0	-3
4	0
$\frac{4}{3}$	-2
-6	

$$
\text { c. }(\ldots,-2)
$$

Replace y with -2 in the equation to find x.

$$
\begin{aligned}
3 x-4 y & =12 \\
3 x-4(-2) & =12 \\
3 x+8 & =12 \\
3 x & =4 \\
x & =\frac{4}{3}
\end{aligned}
$$

CLASSROOM Completing Ordered Pairs and Making a Table (cont'd)
omplete the table of ordered pairs for $3 x-4 y=12$.
Solution:

x	y
0	-3
4	0
$\frac{4}{3}$	-2
-6	$\frac{-15}{2}$

d. $(-6, \ldots)$

Replace x with -6 in the equation to find y

$$
\begin{aligned}
3 x-4 y & =12 \\
3(-6)-4 y & =12 \\
-18-4 y & =12 \\
-4 y & =30 \\
y & =\frac{-15}{2}
\end{aligned}
$$

Graph lines.

The graph of an equation is the set of points corresponding to all ordered pairs that satisfy the equation. It gives a "picture" of the equation.

Linear Equation in Two Variables

A linear equation in two variables can be written in the form

$$
A x+B y=C,
$$

where A, B, and C are real numbers and A and B not both 0 . This form is called standard form.

Find x - and y-intercepts.

A straight line is determined if any two different points on a line are known. Therefore, finding two different points is enough to graph the line.

The x-intercept is the point (if any) where the line intersects the x axis; likewise, the y-intercept is the point (if any) where the line intersects the y-axis.

Find x - and y - intercepts

Finding Intercepts

When graphing the equation of a line, find the intercepts as follows
Let $y=0$ to find the x-intercept.
Let $x=0$ to find the y-intercept.

y-intercept: Let $\boldsymbol{x}=0$.

$$
\begin{aligned}
2(0)-y & =4 \\
-y & =4 \\
y & =-4(0,-4)
\end{aligned}
$$

CLASSROOM
EXAMPLE 2
Finding Intercepts
Find the x-and y-intercepts and graph the equation $2 x-y=4$.
Solution:
x-intercept: Let $\boldsymbol{y}=0$.

$$
\begin{aligned}
2 x-0 & =4 \\
2 x & =4 \\
x & =2 \quad(2,0)
\end{aligned}
$$

Recognize equations of horizontal and vertical lines and lines passing through the origin.

A line parallel to the x-axis will not have an x-intercept. Similarly, a line parallel to the y-axis will not have a y-intercept.
CLASSROOM
EXAMPLE 3 Graphing a Horizontal Line

Graph $y=3$

Solution:
Writing $y=3$ as $0 x+1 y=3$
shows that any value of x
including $x=0$, gives $y=3$.
Since y is always 3 , there
is no value of x corresponding
to $y=0$, so the graph has
no x-intercepts.

x	y
0	3
1	3

The horizontal line $y=0$ is the x-axis.
Slide 3.1-14

Use the midpoint formula.

Midpoint Formula

If the endpoints of a line segment $P Q$ are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, its midpoint M is

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

In the midpoint formula, the small numbers 1 and 2 in the ordered pairs are called subscripts, read as "x-sub-one and y-sub-one."

CLASSROOM EXAMPLE 6

Use the midpoint formula with $x_{1}=-5, x_{2}=2, y_{1}=8$, and $y_{2}=4$:

$$
\begin{aligned}
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =\left(\frac{-5+2}{2}, \frac{8+4}{2}\right) \\
& =\left(\frac{-3}{2}, \frac{12}{2}\right) \\
& =(-1.5,6)
\end{aligned}
$$

