(3.2 The Slope of a Line

Objectives

1 Find the slope of a line, given two points on the line.
2 Find the slope of a line, given an equation of the line.

3 Graph a line, given its slope and a point on the line.
4 Use slopes to determine whether two lines are parallel, perpendicular, or neither

5 Solve problems involving average rate of change.

The Slope of a Line

Slope is the ratio of vertical change, or rise, to horizontal change, or run. A simple way to remember this is to think, "slope is rise over run."

Find the slope of a line, given two points on the line.
CLASSROOM
EXAMPLE 1
Finding the Slope of a Line
Find the slope of the line through points $(-6,9)$ and $(3,-5)$
Solution:
If $(-6,9)=\left(x_{1}, y_{1}\right)$ and $(3,-5)=\left(x_{2}, y_{2}\right)$, then

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-9}{3-(-6)}=\frac{-14}{9}=-\frac{14}{9}
$$

Thus, the slope is $-\frac{14}{9}$

\section*{| CLASSROOM | |
| :--- | :--- |
| EXAMPLE 1 | Finding the Slope of a Line (cont'd) |}

If the ordered pairs are interchanged so that $(-6,9)=\left(x_{2}, y_{2}\right)$, and $(3,-5)=\left(x_{1}, y_{1}\right)$ in the slope formula, the slope is the same.

Solution:

$$
m=\frac{9-(-5)}{-6-3}=\frac{14}{-9}=-\frac{14}{9}
$$

CLASSROOM
EXAMPLE 2

Finding the Slope of a Lin
Find the slope of the line $3 x-4 y=12$.
Solution: slope.

Let $y=0$ to find that the x-intercept is $(4,0)$. Then let $x=0$ to find that the y-intercept is $(0,-3)$.

Use the two points in the slope formula.

$$
m=\frac{\text { rise }}{\text { run }}=\frac{-3-0}{0-4}=\frac{-3}{-4}=\frac{3}{4}
$$

The slope is $\frac{3}{4}$.

CLASSROOM	
EXAMPLE 3	Finding Slopes of Horizontal and Vertical Lines

Find the slope of the line.
$y+3=0$
Solution:
To find the slope of the line with equation $y+3=0$, select two different points on the line such as $(0,-3)$ and $(2,-3)$, and use the slope formula.

$$
m=\frac{-3-(-3)}{2-0}=\frac{0}{2}=0
$$

The slope is 0 .

CLASSROOM	
EXAMPLE 3	Finding Slopes of Horizontal and Vertical Lines (cont'd)

Find the slope of the line
$x=-6$
Solution:
To find the slope of the line with equation $x=-6$, select two different points on the line such as $(-6,0)$ and $(-6,3)$, and use the slope formula.

$$
m=\frac{3-0}{-6-(-6)}=\frac{3}{0}
$$

The slope is undefined.

Find the slope of a line, given an equation of the line.

Horizontal and Vertical Lines
aAn equation of the form $y=b$ always intersects the y-axis at the
point $(0, b)$.
The line with that equation is horizontal and has slope 0 .
口An equation of the form $x=a$ always intersects the x-axis at the
point (a, 0).
The line with that equation is vertical and has undefined slope.

The line with that equation is vertical and has undefined slope.

Objective 3

Graph a line, given its slope and a point on the line.

Graph a line, given its slope and a point on the line.
Orientation of a Line in the Plane
A positive slope indicates that the line goes up (rises) from left to right.

A negative slope indicates that the line goes down (falls) from left to right.

Objective 4

Use slopes to determine whether two lines are parallel, perpendicular, or neither.

Use slopes to determine whether two lines are parallel, perpendicular, or neither.

Slopes of Parallel Lines

Two nonvertical lines with the same slope are parallel.

Two nonvertical parallel lines have the same slope.

CLASSROOM

Determining Whether Two Lines Are Parallel
Determine whether the line through $(-1,2)$ and $(3,5)$ is parallel to the line through $(4,7)$ and $(8,10)$.

Solution:
The line through $(-1,2)$
and $(3,5)$ has slope

$$
m_{1}=\frac{5-2}{3-(-1)}=\frac{3}{4} .
$$

$$
m_{2}=\frac{10-7}{8-4}=\frac{3}{4} .
$$

Yes, the slopes are the same, so the lines are parallel.

Use slopes to determine whether two lines are parallel, perpendicular, or neither.

Slopes of Perpendicular Lines

If neither is vertical, perpendicular lines have slopes that are negative reciprocals-that is, their product is -1 . Also, lines with slopes that are negative reciprocals are perpendicular.

A line with 0 slope is perpendicular to a line with undefined slope.

CLASSROOM	
EXAMPLE 7	Determining Whether Two Lines Are Perpendicular

Are the lines with these equations perpendicular?
$3 x+5 y=6$
$5 x-3 y=2$
Solution:
Find the slope of each line by solving each equation for y

$$
\begin{array}{rl|rl}
3 x+5 y & =6 \\
5 y & =-3 x+6 & 5 x-3 y & =2 \\
y & =-\frac{3}{5} x+\frac{6}{5} & -3 y & =-5 x+2 \\
y & =\frac{5}{3} x-\frac{2}{3}
\end{array}
$$

Yes, since the product of the slopes of the two lines is $\left(-\frac{3}{5}\right)\left(\frac{5}{3}\right)=-1$,
the lines are perpendicular.

Objective 5

Solve problems involving average rate of change.

Slide 3.2-21

CLASSROOM Interpreting Slope as Average Rate of Change (cont'd) EXAMPLE 9

The average rate of change from 2000 to 2003 is 63.5 hours per year, which is greater than 58 hours per year from 2000 to 2005 as in Example 9.

CLASSROOM EXAMPLE 8

Determining Whether Two Lines Are Parallel, Perpendicular, or Neither
Determine whether the lines with these equations are parallel, perpendicular, or neither.
$4 x-y=2$
$x-4 y=-8$
Solution:
Find the slope of each line by solving each equation for y.

$$
\left.\begin{array}{rl|r}
4 x-y & =2 \\
-y & =-4 x+2 \\
y & =4 x-2 & x-4 y
\end{array}\right) \begin{aligned}
& x-8 \\
&-4 y=-x-8 \\
& y=\frac{1}{4} x+2
\end{aligned}
$$

The slopes, 4 and $\frac{1}{4}$, are not equal so the lines are not parallel
The lines not perpendicular because their product is 1 , not -1 .
Thus, the two lines are neither parallel nor perpendicular.

CLASSROOM EXAMPLE 10

Interpreting Slope as Average Rate of Change
In 2000, 942.5 million compact discs were sold in the United States. In 2006, 614.9 million CDs were sold. Find the average rate of change in CDs sold per year.
(Source: Recording Industry Association of America.)

Solution:

$\left(x_{1} y_{1}\right)=(2000,942.5)$
$\left(x_{2} y_{2}\right)=(2006,614.9)$
Average rate of change $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{614.9-942.5}{2006-2000}=\frac{-327.6}{6}
$$

The average rate of change from 2000 to 2006 was -54.6 million CDs per year.

