

Graph lines.

The **graph of an equation** is the set of points corresponding to *all* ordered pairs that satisfy the equation. It gives a "picture" of the equation.

Linear Equation in Two Variables

A linear equation in two variables can be written in the form

Ax + By = C,

Slide 3.1

where *A*, *B*, and *C* are real numbers and *A* and *B* not both 0. This form is called **standard form.**

Objective 4 Use slopes to determine whether two lines are parallel, perpendicular, or neither.

Slide 3.2-

Use slopes to determine whether two lines are parallel, perpendicular, or neither.

Slopes of Parallel Lines

Two nonvertical lines with the same slope are parallel.

Two nonvertical parallel lines have the same slope.

Slide 3.2- 16

3.3 Linear Equations in Two Variables		
Obje	ectives	
1	Write an equation of a line, given its slope and y-intercept.	
2	Graph a line, using its slope and y-intercept.	
3	Write an equation of a line, given its slope and a point on the line.	
4	Write equations of horizontal and vertical lines.	
5	Write an equation of a line, given two points on the line.	
6	Write an equation of a line parallel or perpendicular to a given line.	
7	Write an equation of a line that models real data.	
	PEARSON	

Write an equation of a line, given its slope and *j*-intercept. Slope-Intercept Form The slope-intercept form of the equation of a line with slope *m* and *j*-intercept (0, *b*) is y = mx + b. f = fSlope *j*-intercept (0, *b*) Slope *j*-intercept (0, *b*)

Objective 3

Write an equation of a line, given its slope and a point on the line.

Slide 3

Solution:

Undefined slope

This is a vertical line, since the slope is undefined. A vertical line through the point (a, b) has equation x = a. Here the *x*-coordinate is 2, so the equation is x = 2.

Slope 0

Since the slope is 0, this is a horizontal line. A horizontal line through point (*a*, *b*) has equation y = b. Here the *y*-coordinate is – 1, so the equation is y = -1.

Slide 3.3-1

CLASSROOM
EXAMPLE 5Writing an Equation of a Line, Given Two PointsWrite an equation of the line passing through the points (- 2, 6) and
(1, 4). Give the final answer in standard form.
Solution:
First find the slope by the slope formula.
$$m = \frac{4-6}{1-(-2)} = \frac{-2}{3} = -\frac{2}{3}$$
Use either point as (x_1, y_1) in the point-slope form of the equation of a line.We will choose the point (1, 4): $x_1 = 1$ and $y_1 = 4$

Slide 3.3-

 CLASSROOM
EXAMPLE 5
 Writing an Equation of a Line, Given Two Points (cont'd)

 Using $m = -\frac{2}{3}$; $x_1 = 1$ and $y_1 = 4$ $y - y_1 = m(x - x_1)$
 $y - 4 = -\frac{2}{3}(x - 1)$ Substitute.

 3y - 12 = -2x + 2 Multiply by 3.

 2x + 3y = 14 Add 2x and 12.

 If the other point were used, the same equation would result.
 Silde 3.3-14

CLASSROOM
EXAMPLE 6Writing Equations of Parallel or Perpendicular LinesWrite an equation of the line passing through the point (- 8, 3) and
(a) parallel to the line
$$2x - 3y = 10$$
; (b) perpendicular to the line
 $2x - 3y = 10$. Give the final answers in slope-intercept form.Parallel to the line...Solution:Find the slope of the line $2x - 3y = 10$ by solving for y. $2x - 3y = 10$
 $-3y = -2x + 10$
 $y = \frac{2}{3}x - \frac{10}{3}$

Slide 3.3- 16

rms of Linear Equations		
Equation	Description	When to Use
y = mx + b	Slope-Intercept Form Slope is m. y-intercept is (0, b).	The slope and y-intercept can be easily identified and used to quickly graph the equation.
$\mathbf{y} - \mathbf{y}_i = \mathbf{m}(\mathbf{x} - \mathbf{x}_i)$	Point-Slope Form Slope is m . Line passes through (x_1, y_1) .	This form is ideal for finding the equation of a line if the slope and a point on the line or two points on the line are known.
Ax + By = C	$\begin{array}{l} \textbf{Standard Form} \\ (A, B, and C integers, A \geq 0) \\ \text{Slope is } -\frac{A}{B} (B \neq 0). \\ x \text{-intercept is } (\frac{C}{A}, 0) (A \neq 0). \\ y \text{-intercept is } (0, \frac{C}{B}) (B \neq 0). \end{array}$	The x- and y-intercepts can be found quickly and used to graph the equation. The slope must be calculated.
y = b	Horizontal Line Slope is 0. y-intercept is (0, b).	If the graph intersects only the y-axis, then y is the only variable in the equation.
x = a	Vertical Line Slope is undefined. x-intercept is (a, 0).	If the graph intersects only the x-axis, then x is the only variable in the equation.

Graph the union of two linear inequalities.

When two inequalities are joined by the word **or**, we must find the union of the graphs of the inequalities. **The graph of the union of two inequalities includes all points satisfy either inequality.**

Slide 3.4-13

Define and identify relations and functions.

Relation

A relation is a set of ordered pairs.

Function

A function is a relation in which, for each value of the first component of the ordered pairs, there is *exactly one value* of the second component.

CLASSROOM EXAMPLE 2	Finding Dom	ains and Ranges	of Relations
Give the domain below. Does it de	and range of the fine a function?	e relation represen	ited by the table
Solution:		Number of Gallons Pumped	Cost of This Number of Gallons
		0	0(\$3.20) = \$ 0.00
		1	1(\$3.20) = \$ 3.20
		2	2(\$3.20) = \$ 6.40
		3	3(\$3.20) = \$ 9.60
Domain: {0, 1, 2	. 3. 4}	4	4(\$3.20) = \$12.80
Range: {\$0, \$3.2	20, \$6.40, \$9.60	, \$12.80}	
Yes, the relation of	defines a functio	n.	
onvright © 2012, 2008, 2004, Pea	rson Education Inc		Slide 3.

Vertical Line Test			
If every vertica one point, ther	l line intersects the g the relation is a fund	raph of a relation in	n no more than

	CLASSROOM EXAMPLE 6	Writing Equations Using Function Notation	(cont'd)
	$\operatorname{Find} f$ (1) and f (a).	
	Solution:		
	Step 2 Replace y	with f (x).	
	$f(1) = \frac{x^2}{4}$ $f(1) = \frac{(1)}{4}$ $= \frac{1}{4}$	$f(a) = \frac{x^2}{4} - \frac{3}{4}$ $f(a) = \frac{x^2}{4} - \frac{3}{4}$ $f(a) = \frac{(a)^2}{4} - \frac{3}{4}$ $f(a) = \frac{(a)^2}{4} - \frac{3}{4}$ $= \frac{a^2 - 3}{4}$	
С	nyright © 2012, 2008, 2004, Pea	son Education. Inc	Slide 3.6- 10

	Linear Function
A function that ca	n be defined by
	f(x) = ax + b
for real numbers slope <i>m</i> of the gr function is $(-\infty, \infty)$	a and <i>b</i> is a linear function . The value of a is the aph of the function. The domain of any linear).

