3.1 The Rectangular Coordinate System

Objectives

1 Interpret a line graph.
2 Plot ordered pairs.

3 Find ordered pairs that satisfy a given equation.
4 Graph lines.
5 Find x - and y-intercepts.
6 Recognize equations of horizontal and vertical lines and lines passing through the origin.

7 Use the midpoint formula.

Interpret a line graph.

The line graph in the figure to the right presents information based on a method for locating a point in a plane developed by René
Descartes, a $17^{\text {th }}$-century
French mathematician.
Today, we still use this method to plot points and graph linear equations in two variables whose graphs are straight lines.

Plot ordered pairs.

Each of the pair of numbers

$$
(3,2),(-5,6), \text { and }(4,-1)
$$

is an example of an ordered pair.
An ordered pair is a pair of numbers written within parentheses, consisting of a first component and a second component.

We graph an ordered pair by using two perpendicular number lines that intersect at their 0 points, as shown in the plane in the figure to the right. The common 0 point is called the origin

The first number in the ordered pair indicates the position relative to the x-axis, and the second number indicates the position relative to the y-axis.

Plot ordered pairs.

The position of any point in this plane is determined by referring to the horizontal number line, or \boldsymbol{x}-axis, and the vertical number line, or y-axis. The x-axis and the y-axis make up a rectangular (or Cartesian) coordinate system.

The four regions of the graph, shown below, are called quadrants I, II, III, and IV, reading counterclockwise from the upper right quadrant. The points on the x-axis and y-axis to not belong to any quadrant

CLASSROON EXAMPLE 1 Completing Ordered Pairs and Making a Table (cont'd)

Complete the table of ordered pairs for $3 x-4 y=12$.

Solution:

x	y
0	-3
4	0
	-2
-6	

b. (
.
Replace y with 0 in the equation to find x.

$$
\begin{aligned}
3 x-4 y & =12 \\
3 x-4(0) & =12 \\
3 x-0 & =12 \\
3 x & =12 \\
x & =4
\end{aligned}
$$

CLASSROOM	
EXAMPLE 1	Completing Ordered Pairs and Making a Table (cont'd)

Complete the table of ordered pairs for $3 x-4 y=12$.
Solution:

x	y
0	-3
4	0
$\frac{4}{3}$	-2
-6	

$$
\text { c. }(\ldots,-2)
$$

Replace y with -2 in the equation to find x.

$$
\begin{aligned}
3 x-4 y & =12 \\
3 x-4(-2) & =12 \\
3 x+8 & =12 \\
3 x & =4 \\
x & =\frac{4}{3}
\end{aligned}
$$

CLASSROOM Completing Ordered Pairs and Making a Table (cont'd)
omplete the table of ordered pairs for $3 x-4 y=12$.
Solution:

x	y
0	-3
4	0
$\frac{4}{3}$	-2
-6	$\frac{-15}{2}$

d. $(-6, \ldots)$

Replace x with -6 in the equation to find y

$$
\begin{aligned}
3 x-4 y & =12 \\
3(-6)-4 y & =12 \\
-18-4 y & =12 \\
-4 y & =30 \\
y & =\frac{-15}{2}
\end{aligned}
$$

Graph lines.

The graph of an equation is the set of points corresponding to all ordered pairs that satisfy the equation. It gives a "picture" of the equation.

Linear Equation in Two Variables

A linear equation in two variables can be written in the form

$$
A x+B y=C,
$$

where A, B, and C are real numbers and A and B not both 0 . This form is called standard form.

Find x - and y-intercepts.

A straight line is determined if any two different points on a line are known. Therefore, finding two different points is enough to graph the line.

The x-intercept is the point (if any) where the line intersects the x axis; likewise, the y-intercept is the point (if any) where the line intersects the y-axis.

Find x - and y - intercepts

Finding Intercepts

When graphing the equation of a line, find the intercepts as follows
Let $y=0$ to find the x-intercept.
Let $x=0$ to find the y-intercept.

y-intercept: Let $\boldsymbol{x}=0$.

$$
\begin{aligned}
2(0)-y & =4 \\
-y & =4 \\
y & =-4(0,-4)
\end{aligned}
$$

CLASSROOM
EXAMPLE 2
Finding Intercepts
Find the x-and y-intercepts and graph the equation $2 x-y=4$.
Solution:
x-intercept: Let $\boldsymbol{y}=0$.

$$
\begin{aligned}
2 x-0 & =4 \\
2 x & =4 \\
x & =2 \quad(2,0)
\end{aligned}
$$

Recognize equations of horizontal and vertical lines and lines passing through the origin.

A line parallel to the x-axis will not have an x-intercept. Similarly, a line parallel to the y-axis will not have a y-intercept.
CLASSROOM
EXAMPLE 3 Graphing a Horizontal Line

Graph $y=3$

Solution:
Writing $y=3$ as $0 x+1 y=3$
shows that any value of x
including $x=0$, gives $y=3$.
Since y is always 3 , there
is no value of x corresponding
to $y=0$, so the graph has
no x-intercepts.

x	y
0	3
1	3

The horizontal line $y=0$ is the x-axis.
Slide 3.1-14

Use the midpoint formula.

Midpoint Formula

If the endpoints of a line segment $P Q$ are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, its midpoint M is

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

In the midpoint formula, the small numbers 1 and 2 in the ordered pairs are called subscripts, read as "x-sub-one and y-sub-one."

CLASSROOM EXAMPLE 6

Use the midpoint formula with $x_{1}=-5, x_{2}=2, y_{1}=8$, and $y_{2}=4$:

$$
\begin{aligned}
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =\left(\frac{-5+2}{2}, \frac{8+4}{2}\right) \\
& =\left(\frac{-3}{2}, \frac{12}{2}\right) \\
& =(-1.5,6)
\end{aligned}
$$

(3.2 The Slope of a Line

Objectives

1 Find the slope of a line, given two points on the line.
2 Find the slope of a line, given an equation of the line.

3 Graph a line, given its slope and a point on the line.
4 Use slopes to determine whether two lines are parallel, perpendicular, or neither

5 Solve problems involving average rate of change.

The Slope of a Line

Slope is the ratio of vertical change, or rise, to horizontal change, or run. A simple way to remember this is to think, "slope is rise over run."

Find the slope of a line, given two points on the line.
CLASSROOM
EXAMPLE 1
Finding the Slope of a Line
Find the slope of the line through points $(-6,9)$ and $(3,-5)$
Solution:
If $(-6,9)=\left(x_{1}, y_{1}\right)$ and $(3,-5)=\left(x_{2}, y_{2}\right)$, then

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-9}{3-(-6)}=\frac{-14}{9}=-\frac{14}{9}
$$

Thus, the slope is $-\frac{14}{9}$

\section*{| CLASSROOM | |
| :--- | :--- |
| EXAMPLE 1 | Finding the Slope of a Line (cont'd) |}

If the ordered pairs are interchanged so that $(-6,9)=\left(x_{2}, y_{2}\right)$, and $(3,-5)=\left(x_{1}, y_{1}\right)$ in the slope formula, the slope is the same.

Solution:

$$
m=\frac{9-(-5)}{-6-3}=\frac{14}{-9}=-\frac{14}{9}
$$

CLASSROOM
EXAMPLE 2

Finding the Slope of a Lin
Find the slope of the line $3 x-4 y=12$.
Solution: slope.

Let $y=0$ to find that the x-intercept is $(4,0)$. Then let $x=0$ to find that the y-intercept is $(0,-3)$.

Use the two points in the slope formula.

$$
m=\frac{\text { rise }}{\text { run }}=\frac{-3-0}{0-4}=\frac{-3}{-4}=\frac{3}{4}
$$

The slope is $\frac{3}{4}$.

CLASSROOM	
EXAMPLE 3	Finding Slopes of Horizontal and Vertical Lines

Find the slope of the line.
$y+3=0$
Solution:
To find the slope of the line with equation $y+3=0$, select two different points on the line such as $(0,-3)$ and $(2,-3)$, and use the slope formula.

$$
m=\frac{-3-(-3)}{2-0}=\frac{0}{2}=0
$$

The slope is 0 .

CLASSROOM	
EXAMPLE 3	Finding Slopes of Horizontal and Vertical Lines (cont'd)

Find the slope of the line
$x=-6$
Solution:
To find the slope of the line with equation $x=-6$, select two different points on the line such as $(-6,0)$ and $(-6,3)$, and use the slope formula.

$$
m=\frac{3-0}{-6-(-6)}=\frac{3}{0}
$$

The slope is undefined.

Find the slope of a line, given an equation of the line.

Horizontal and Vertical Lines
aAn equation of the form $y=b$ always intersects the y-axis at the
point $(0, b)$.
The line with that equation is horizontal and has slope 0 .
口An equation of the form $x=a$ always intersects the x-axis at the
point (a, 0).
The line with that equation is vertical and has undefined slope.

The line with that equation is vertical and has undefined slope.

Objective 3

Graph a line, given its slope and a point on the line.

Graph a line, given its slope and a point on the line.
Orientation of a Line in the Plane
A positive slope indicates that the line goes up (rises) from left to right.

A negative slope indicates that the line goes down (falls) from left to right.

Objective 4

Use slopes to determine whether two lines are parallel, perpendicular, or neither.

Use slopes to determine whether two lines are parallel, perpendicular, or neither.

Slopes of Parallel Lines

Two nonvertical lines with the same slope are parallel.

Two nonvertical parallel lines have the same slope.

CLASSROOM

Determining Whether Two Lines Are Parallel
Determine whether the line through $(-1,2)$ and $(3,5)$ is parallel to the line through $(4,7)$ and $(8,10)$.

Solution:
The line through $(-1,2)$
and $(3,5)$ has slope

$$
m_{1}=\frac{5-2}{3-(-1)}=\frac{3}{4} .
$$

$$
m_{2}=\frac{10-7}{8-4}=\frac{3}{4} .
$$

Yes, the slopes are the same, so the lines are parallel.

Use slopes to determine whether two lines are parallel, perpendicular, or neither.

Slopes of Perpendicular Lines

If neither is vertical, perpendicular lines have slopes that are negative reciprocals-that is, their product is -1 . Also, lines with slopes that are negative reciprocals are perpendicular.

A line with 0 slope is perpendicular to a line with undefined slope.

CLASSROOM	
EXAMPLE 7	Determining Whether Two Lines Are Perpendicular

Are the lines with these equations perpendicular?
$3 x+5 y=6$
$5 x-3 y=2$
Solution:
Find the slope of each line by solving each equation for y

$$
\begin{array}{rl|rl}
3 x+5 y & =6 \\
5 y & =-3 x+6 & 5 x-3 y & =2 \\
y & =-\frac{3}{5} x+\frac{6}{5} & -3 y & =-5 x+2 \\
y & =\frac{5}{3} x-\frac{2}{3}
\end{array}
$$

Yes, since the product of the slopes of the two lines is $\left(-\frac{3}{5}\right)\left(\frac{5}{3}\right)=-1$,
the lines are perpendicular.

Objective 5

Solve problems involving average rate of change.

Slide 3.2-21

CLASSROOM Interpreting Slope as Average Rate of Change (cont'd) EXAMPLE 9

The average rate of change from 2000 to 2003 is 63.5 hours per year, which is greater than 58 hours per year from 2000 to 2005 as in Example 9.

CLASSROOM EXAMPLE 8

Determining Whether Two Lines Are Parallel, Perpendicular, or Neither
Determine whether the lines with these equations are parallel, perpendicular, or neither.
$4 x-y=2$
$x-4 y=-8$
Solution:
Find the slope of each line by solving each equation for y.

$$
\left.\begin{array}{rl|r}
4 x-y & =2 \\
-y & =-4 x+2 \\
y & =4 x-2 & x-4 y
\end{array}\right) \begin{aligned}
& x-8 \\
&-4 y=-x-8 \\
& y=\frac{1}{4} x+2
\end{aligned}
$$

The slopes, 4 and $\frac{1}{4}$, are not equal so the lines are not parallel
The lines not perpendicular because their product is 1 , not -1 .
Thus, the two lines are neither parallel nor perpendicular.

CLASSROOM EXAMPLE 10

Interpreting Slope as Average Rate of Change
In 2000, 942.5 million compact discs were sold in the United States. In 2006, 614.9 million CDs were sold. Find the average rate of change in CDs sold per year.
(Source: Recording Industry Association of America.)

Solution:

$\left(x_{1} y_{1}\right)=(2000,942.5)$
$\left(x_{2} y_{2}\right)=(2006,614.9)$
Average rate of change $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{614.9-942.5}{2006-2000}=\frac{-327.6}{6}
$$

The average rate of change from 2000 to 2006 was -54.6 million CDs per year.

3.3 Linear Equations in Two Variables

Objectives
1 Write an equation of a line, given its slope and y-intercept.
2 Graph a line, using its slope and y-intercept.
3 Write an equation of a line, given its slope and a point on the line.
4 Write equations of horizontal and vertical lines.
5 Write an equation of a line, given two points on the line.
6 Write an equation of a line parallel or perpendicular to a given line.
7 Write an equation of a line that models real data.

Write an equation of a line, given its slope and

 y-intercept.In Section 3.2, we found the slope of a line from its equation by solving the equation for y. Once we had isolated y, we found that the slope was the coefficient of x. However, we still don't know what the last number in the equation represents. That is, the number with no variable in the equation of the form, $y=4 x+8$. To find out, suppose a line has a slope m and y-intercept $(0, b)$.
$m=\frac{y-b}{x-0} \quad$ or $m=\frac{y-b}{x}$
$m x=y-b$
$m x+b=y$
$y=m x+b$

Thus, b is the y-intercept or 8 in our original equation.

Write an equation of a line, given its slope and y-intercept.

Slope-Intercept Form

The slope-intercept form of the equation of a line with slope \boldsymbol{m} and y-intercept $(0, b)$ is
$y=m x+b$.
\uparrow
Slope $\quad y$-intercept $(0, b)$

CLASSROOM

Graph the line, using the slope and y-intercept.
$x+2 y=-4$
Solution:
Write the equation in slope-intercept form by solving for y.

$$
x+2 y=-4
$$

$2 y=-x-4 \quad$ Subtract x.
$y=-\frac{1}{2} x-2$

Slope \qquad y-intercept ($0,-2$)

CLASSROOM
 EXAMPLE 1
 Writing an Equation of a Line

Write an equation of the line with slope 2 and y-intercept $(0,-3)$.
Solution:

```
Let \(\boldsymbol{m}=2\)
```

Let $b=-3$

Substitute these values into the slope-intercept form.
$y=m x+b$
$y=2 x-3$

Slide 3.3-4

Objective 3

Write an equation of a line, given its slope and a point on the line.

Write an equation of a line, given its slope a point on the line.

CLASSROOM Writing an Equation of a Line, Given the Slope and a Point EXAMPLE 3 f the line with 2
EXAMPLE 3
$\frac{2}{5}$ an point $(3,-4)$.

Solution:
Use the point-slope form with $\left(x_{1}, y_{1}\right)=(3,-4)$ and $m=\frac{2}{5}$.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-(-4) & =\frac{2}{5}(x-3) & & \text { Substitute. } \\
y+4 & =\frac{2}{5}(x-3) & & \\
5 y+20 & =2 x-6 & & \text { Multiply by } 5 . \\
5 y & =2 x-26 & & \text { Subtract } \mathbf{2 0 .} \\
y & =\frac{2}{5} x-\frac{26}{5} & & \text { Divide by } 5 .
\end{aligned}
$$

Objective 4

Write equations of horizontal and vertical lines.

Write equations of horizontal and vertical lines.
Equations of Horizontal and Vertical Lines
The horizontal line through the point (a, b) has equation $y=b$.

The vertical line through the point (a, b) has equation $x=a$.

CLASSROOM EXAMPLE 4

Write an equation of the line passing through the point $(2,-1)$ that satisfies the given condition.
Solution:
Undefined slope
This is a vertical line, since the slope is undefined. A vertical line through the point (a, b) has equation $x=a$. Here the x-coordinate is 2 , so the equation is $x=2$.

Slope 0
Since the slope is 0 , this is a horizontal line. A horizontal line through point (a, b) has equation $y=b$. Here the y-coordinate is -1 , so the equation is $y=-1$.

\section*{| CLASSROOM | |
| :---: | :--- |
| EXAMPLE 5 | Writing an Equation of a Line, Given Two Points |}

Write an equation of the line passing through the points $(-2,6)$ and $(1,4)$. Give the final answer in standard form.
Solution:
First find the slope by the slope formula.

$$
m=\frac{4-6}{1-(-2)}=\frac{-2}{3}=-\frac{2}{3}
$$

Use either point as $\left(x_{1}, y_{1}\right)$ in the point-slope form of the equation of a line.

We will choose the point $(1,4): x_{1}=1$ and $y_{1}=4$

CLASSROOM	
EXAMPLE 5	Writing an Equation of a Line, Given Two Points (cont'd)

Using $m=-\frac{2}{3} ; x_{1}=1$ and $y_{1}=4$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \\
y-4 & =-\frac{2}{3}(x-1) & & \text { Substitute. } \\
3 y-12 & =-2 x+2 & & \text { Multiply by } 3 . \\
2 x+3 y & =14 & & \text { Add } 2 x \text { and } 12 .
\end{aligned}
$$

If the other point were used, the same equation would result.

Objective 6

Write an equation of a line parallel or perpendicular to a given line.

CLASSROOM EXAMPLE 6

Write an equation of the line passing through the point $(-8,3)$ and
(a) parallel to the line $2 x-3 y=10$; (b) perpendicular to the line $2 x-3 y=10$. Give the final answers in slope-intercept form.

Parallel to the line...
Solution:

Find the slope of the line $2 x-3 y=10$ by solving for y.

$$
\begin{aligned}
2 x-3 y & =10 \\
-3 y & =-2 x+10 \\
y & =\frac{2}{3} x-\frac{10}{3}
\end{aligned}
$$

CLASSROOM

EXAMPLE 6
Writing Equations of Parallel or Perpendicular Lines (cont'd)
Find an equation of the line passing through the point $(-8,3)$ when the
slope is $\frac{2}{3}$.
Parallel lines have the same slope. Use point slope form and the given point.

$$
\begin{array}{lr}
y-y_{1}=m\left(x-x_{1}\right) & y=\frac{2}{3} x+\frac{16}{3}+\frac{9}{3} \\
y-3=\frac{2}{3}[x-(-8)] & y=\frac{2}{3} x+\frac{25}{3} \\
y-3=\frac{2}{3}(x+8) & \begin{array}{l}
\text { The fractions were not cleared } \\
\text { because we want the equation in } \\
\text { slope-intercept form instead of } \\
\text { standard form. }
\end{array} \\
y-3=\frac{2}{3} x+\frac{16}{3} &
\end{array}
$$

CLASSROOM
EXAMPLE 6
Writing Equations of Parallel or Perpendicular Lines (cont'd)
Perpendicular to the line...

Solution:

The slope of the perpendicular line would have a slope that is the negative reciprocal of $\frac{2}{3}$, or $-\frac{3}{2}$.

Find an equation of the line passing through the point $(-8,3)$, when the slope is $-\frac{3}{2}$.

$$
\begin{array}{ll}
y-y_{1}=m\left(x-x_{1}\right) & y-3=-\frac{3}{2}(x+8) \\
y-3=-\frac{3}{2}[x-(-8)] & y-3=-\frac{3}{2} x-12
\end{array} \quad y=-\frac{3}{2} x-9
$$

Objective 7

Write an equation of a line that models real data.

```
    LLASSROOM
    EXAMPLE }
to make a telephone call. Write an equation that gives the cost y for a
call of }x\mathrm{ minutes.
```


Solution:

```
\(y=\$ 0.20+\$ 0.10 x\)
or
\(y=\$ 0.10 x+0.20\)
```

CLASSROOM	Finding an Equation of a Line That Models Data
EXAMPLE 8	

The percentage of the U.S. population 25 yr and older with at least a high school diploma is shown in the table for selected years. (Source. U.S. Census Bureau.)

Let $x=0$ represent 1950, $x=10$ represent
1960, and so on. Use the data for 1950 and
2000 to write an equation that models the data

Solution:

We choose two data points $(0,34.3)$ and $(50,84.1)$ to find the slope of the line

$$
m=\frac{84.1-34.3}{50-0}=\frac{49.8}{50}=0.996
$$

The equation is:

Year	Percent
1950	34.3
1960	41.4
1970	52.3
1980	66.5
1990	77.6
2000	84.1
2007	85.7

$$
y=0.996 x+34.3
$$

CLASSROOM

Finding an Equation of a Line That Models Data (cont'd)
Use the equation from the first part of the problem to approximate the percentage, to the nearest tenth, of the U.S. population 25 yr and older who were at least high school graduates in 1995.

Solution:
$y=0.996 x+34.3$
$y=0.996(45)+34.3$
$y=79.1$ or 79.1%

Year	Percent
1950	34.3
1960	41.4
1970	52.3
1980	66.5
1990	77.6
2000	84.1
2007	85.7

CLASSROOM EXAMPLE 9

Writing an Equation of a Line That Models Data
Use the ordered pairs $(4,220)$ and $(6,251)$ to find an equation that models the data in the graph below.
Solution:
Find the slope through the two points
$m=\frac{251-220}{6-4}=\frac{31}{2}=15.5$
Then, we substitute one of the points into the point-slope form of the equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-220 & =15.5(x-4) \\
y-220 & =15.5 x-62 \\
y & =15.5 x+158
\end{aligned}
$$

3.4 Linear Inequalities in Two Variables

Objectives
1 Graph linear inequalities in two variables.
2 Graph the intersection of two linear inequalities
3 Graph the union of two linear inequalities.

Graph linear inequalities in two variables.

Linear Inequalities in Two Variables

An inequality that can be written as

$$
A x+B y<C, A x+B y \leq C, A x+B y>C, \text { or } A x+B y \geq C,
$$

where $A_{2} B$, and C are real numbers and A and B are not both 0 , is a linear inequality in two variables.

Graph linear inequalities in two variables.

Graphing a Linear Inequality

Step 1 Draw the graph of the straight line that is the boundary. Make the line solid if the inequality involves \leq or \geq. Make the line dashed if the inequality involves < and >

Step 2 Choose a test point. Choose any point not on the line, and substitute the coordinates of that point in the inequality.

Step 3 Shade the appropriate region. Shade the region that includes the test point of it satisfies the original inequality. Otherwise, shade the region on the other side of the boundary line.

```
    When drawing the boundary line in Step 1, be careful to draw a solid line if the
    inequality includes equality ( }\leq,\geq\mathrm{ ) or a dashed line if equality is not included ( <,>).
```


Graph linear inequalities in two variables.

If the inequality is written in the form $y>m x+b$ or $y<m x+b$, then the inequality symbol indicates which half-plane to shade.

If $y>m x+b$, then shade above the boundary line;
If $y<m x+b$, then shade below the boundary line;
This method works only if the inequality is solved for y

A common error in using the method just described is to use the origina inequality symbol when deciding which half-plane to shade. Be sure to use the inequality symbol found in the inequality after it is solved for y.

CLASSROOM Graphing a Linear Inequality

$$
\text { Graph } 3 x+4 y<12
$$

Solution:

Solve the inequality for y

$$
\begin{aligned}
4 y & <-3 x+12 \\
y & <-\frac{3}{4} x+3
\end{aligned}
$$

Graph the boundary line $y=-\frac{3}{4} x+3$ as a dashed line because the
inequality symbol is <.
Since the inequality is solved for \boldsymbol{y} and the inequality symbol is <, we shade the half-plane below the boundary line.

Graph the intersection of two linear inequalities.

A pair of inequalities joined with the word and is interpreted as the intersection of the solution sets of the inequalities. The graph of the intersection of two or more inequalities is the region of the plane where all points satisfy all of the inequalities at the same time.

Graph the union of two linear inequalities.

When two inequalities are joined by the word or, we must find the union of the graphs of the inequalities. The graph of the union of two inequalities includes all points satisfy either inequality.

CLASSROOM EXAMPLE 4
 Graphing the Union of Two Inequalities

Graph $7 x-3 y<21$ or $x>2$.
Solution:
Graph each inequality with a dashed line.

The graph of the union is the region that includes al points on both graphs.

3.5 Introduction to Relations and Functions

Objectives
1 Distinguish between independent and dependent variables.
2 Define and identify relations and functions.
3 Find the domain and range.
4 Identify functions defined by graphs and equations.

Objective 1

Distinguish between independent and dependent variables.

Distinguish between independent and dependent

 variables.We often describe one quantity in terms of another:
The amount of your paycheck if you are paid hourly depends on the number of hours you worked.

The cost at the gas station depends on the number of gallons of gas you pumped into your car.

The distance traveled by a car moving at a constant speed depends on the time traveled.

If the value of the variable y depends on the value of the variable x, then y is the dependent variable and x is the independent variable.

(x, y)

Define and identify relations and functions.

Relation

A relation is a set of ordered pairs.

Function

A function is a relation in which, for each value of the first component of the ordered pairs, there is exactly one value of the second component.

CLASSROOM
Determining Whether Relations are Functions
Determine whether each relation defines a function.
Solution:
$\{(0,3),(-1,2),(-1,3)\}$

No, the same x-value is paired with a different y-value
In a function, no two ordered pairs can have the same first component and different second components.
$\{(5,4),(6,4),(7,4)\}$

Yes, each different x-value is paired with a y-value. This does not violate the definition of a function

Define and identify relations and functions

Relations and functions can also be expressed as a correspondence or mapping from one set to another.

Define and identify relations and functions.

Relations and functions can be defined in many ways.
\square As a set of ordered pairs (as in Example 1).
-As a correspondence or mapping (as previously illustrated)
-As a table.
$\square A s$ a graph.
$\square A s$ an equation (or rule).
Another way to think of a function relationship is to think of the independent variable as an input and the dependent variable as an output. This is illustrated by the input-output (function) machine for the function defined by

Find the domain and range.

Domain and Range

In a relation, the set of all values of the independent variable (x) is the domain.

The set of all values of the dependent variable (y) is the range.

CLASSROOM EXAMPLE 2	Finding Domains and Ranges of Relations	
Give the domain and range of the relation represented by the table below. Does it define a function?		
Solution:	Number of Gallons Pumped	Cost of This Number of Gallons
	0	$0(\$ 3.20)=\$ 0.00$
	1	$1(\$ 3.20)=\$ 3.20$
	2	$2(\$ 3.20)=\$ 6.40$
	3	$3(\$ 3.20)=\$ 9.60$
Domain: $\{0,1$,	$3,4\}$	$4(\$ 3.20)=\$ 12.80$

Range: $\{\$ 0, \$ 3.20, \$ 6.40, \$ 9.60, \$ 12.80\}$

Yes, the relation defines a function.

CLASSROOM EXAMPLE 3
 Give the domain and range of the relation.

Solution:

The arrowheads indicate that the line extends indefinitely left and right.
Domain: $(-\infty, \infty)$
Range: ($-\infty$, 4]

Identify functions defined by graphs and equations.
Vertical Line Test
If every vertical line intersects the graph of a relation in no more than one point, then the relation is a function.

Identify functions defined by graphs and equations.

Function

Not a Function

CLASSROOM EXAMPLE 4
Using the Vertical Line Test
Use the vertical line test to decide whether the relation shown below
is a function.
Solution:
Yes, the relation is a function.
slide 3.5- 13

Identify functions defined by graphs and equations.

Relations are often defined by equations. If a relation is defined by an equation, keep the following guidelines in mind when finding its domain.
\square Exclude from the domain any values that make the denominator of a fraction equal to 0 .

EExclude from the domain any values that result in an even root of a negative number.

Identify functions defined by graphs and equations.

Agreement on Domain

Unless specified otherwise, the domain of a relation is assumed to be all real numbers that produce real numbers when substituted for the independent variable.

$$
\begin{aligned}
& \begin{array}{l}
\text { CLASSROOM } \\
\text { EXAMPLE } 5
\end{array} \\
& \text { Identifying Functions from Their Equations } \\
& \text { Decide whether each relation defines } y \text { as a function of } x \text {, and give } \\
& \text { the domain. } \\
& \begin{array}{l}
\text { Solution: } \\
\begin{array}{l}
y=-2 x+7 \\
y \text { is always found by multiplying by negative two and adding } 7 \text {. Each } \\
\text { value of } x \text { corresponds to just one value of } y \text {. } \\
\text { Yes, }(-\infty, \infty) \\
y=\sqrt{5 x-6} \\
\qquad 5 x-6 \geq 0 \\
5 x \geq 6
\end{array} \\
x \geq \frac{6}{5} \\
\text { Yes, }\left[\frac{6}{5}, \infty\right) \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Graphs that do not represent functions are still relations. All equations and graphs represent relations, and all relations have a domain and range.

Identify functions defined by graphs and equations.
Variations of the Definition of a Function

1. A function is a relation in which, for each value of the first component of the ordered pairs, there is exactly one value of the second component
2. A function is a set of distinct ordered pairs in which no first component is repeated.
3. A function is a rule or correspondence that assigns exactly one range value to each domain value

3.6 Function Notation and Linear Functions

Objectives
1 Use function notation.
2 Graph linear and constant functions.

Use function notation.

When a function f is defined with a rule or an equation using x and y for the independent and dependent variables, we say, " y is a function of x " to emphasize that y depends on x. We use the notation

$$
y=f(x)
$$

called function notation, to express this and read $f(x)$ as " \boldsymbol{f} of \boldsymbol{x}."

Solution:

$$
\begin{gathered}
f(-3)=6(-3)-2 \\
f(-3)=-18-2 \\
f(x)=-20
\end{gathered}
$$

CLASSROOM	
EXAMPLE 2	Evaluating a Function

Let $f(x)=\frac{-3 x+5}{2}$. Find the following.
$f(-3)$
$f(t)$
Solution:

$$
\begin{aligned}
f(-3) & =\frac{-3(-3)+5}{2} \\
& =\frac{9+5}{2} \\
& =7
\end{aligned}
$$

	CLASSROOM EXAMPLE 3	Evaluatin	
	Let $g(x)=5 x-1$. Find and simplify $g(m+2)$.		
	Solution:		
	$g(x)=5 x-1$		
	$g(m+2)=5(m+2)-1$		
	$=5 m+10-1$		
	$=5 m+9$		
	Conurichte2012 2008 2004 Pearson Education_Inc_S Slide 3.6-5		

$$
\begin{aligned}
& \begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 4
\end{array} \\
& \text { Find } f(2) \text { for each function. } \\
& f=\{(2,6),(4,2)\} \\
& \text { Solution: } \\
& \begin{array}{|c|c|}
\hline x & f(x) \\
\hline 2 & 6 \\
\hline 4 & 2 \\
\hline 0 & 0 \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

$f(2)=6$

CLASSROOM	
EXAMPLE 5	Finding Function Values from a Graph

Refer to the graph of the function.
Solution:
Find $f(2)$.

$$
f(2)=1
$$

Find $f(-2)$.

$$
f(-2)=3
$$

For what value of x is $f(x)=0$?

$$
f(4)=0
$$

Use function notation.

Finding an Expression for $\boldsymbol{f}(\boldsymbol{x})$

Step 1 Solve the equation for y

Step 2 Replace y with $f(x)$

$\begin{aligned} & \text { CLASSROOM } \\ & \text { EXAMPLE } 6\end{aligned}$ Writing Equations Using Function Notation (cont'd)
Find $f(1)$ and $f(a)$.
Solution:
Step 2 Replace y with $f(x)$.

$$
\begin{aligned}
f(1) & =\frac{x^{2}}{4}-\frac{3}{4} & f(a) & =\frac{x^{2}}{4}-\frac{3}{4} \\
f(1) & =\frac{(1)^{2}}{4}-\frac{3}{4} & f(a) & =\frac{(a)^{2}}{4}-\frac{3}{4} \\
& =\frac{1}{4}-\frac{3}{4}=-\frac{1}{2} & & =\frac{a^{2}-3}{4}
\end{aligned}
$$

Graph linear and constant functions.
Linear Function
A function that can be defined by

$$
f(x)=a x+b
$$

for real numbers a and b is a linear function. The value of a is the slope m of the graph of the function. The domain of any linear function is $(-\infty, \infty)$.

CLASSROOM
EXAMPLE 7

Graph the function. Give the domain and range.
$f(x)=-1.5$
Solution:

| Graphing Linear and Constant Functions |
| :--- | :--- |
| Domain: $(-\infty, \infty)$ |

Range: $\{-1.5\}$

