4.1 Systems of Linear Equations in Two Variables

Objectives

1 Decide whether an ordered pair is a solution of a linear system.
2 Solve linear systems by graphing.

3 Solve linear systems (with two equations and two variables) by substitution.

4 Solve linear systems (with two equations and two variables) by elimination.

5 Solve special systems.

Systems of Linear Equations in Two Variables

CLASSROOM Deciding Whether an Ordered Pair is a Solution EXAMPLE 1
a solution of the given system?
Is the ordered pair a
$(-4,2) \quad 2 x+y=-6$
Solution: $\quad x+3 y=2$

Replace x with -4 and y with 2 in each equation of the system

$$
\begin{array}{r|r}
2 x+y=-6 & x+3 y=2 \\
2(-4)+2=-6 & -4+3(2)=2 \\
-8+2=-6 & -4+6=2 \\
-6=-6 & 2=2 \\
\text { True } & \text { True }
\end{array}
$$

CLASSROOM
Deciding Whether an Ordered Pair is a Solution (cont'd)
Is the ordered pair a solution of the given system?
(3, -12)

$$
\begin{aligned}
& 2 x+y=-6 \\
& x+3 y=2
\end{aligned}
$$

Replace x with 3 and y with -12 in each equation of the system.

$2 x+y=-6$	$x+3 y=2$
$2(3)+(-12)=-6$	$3+3(-12)=2$
$6-12=-6$	$3-36=2$
$-6=-6$	$-33=2$
True	False

The ordered pair $(3,-12)$ is not a solution of the system, since it does not make both equations true.

CLASSROOM
EXAMPLE 2
Solving a System by Graphing

$$
\begin{array}{lr}
\text { Solve the system of equations by graphing. } & \begin{aligned}
2 x+y & =-5 \\
\text { Solution: } & -x+3 y=6
\end{aligned} ~
\end{array}
$$

Graph each linear equation.

$$
\begin{array}{ll}
2 x+y=-5 & -x+3 y=6 \\
y=-2 x-5 & y=\frac{1}{3} x+2
\end{array}
$$

The graph suggests that the point of intersection is the ordered pair (-3, 1).

Common solution

 $(-3,1)$Check the solution in both equations

Solve linear systems by graphing.

Graphs of Linear Systems in Two Variables the only solution of the system. Since the system has a solution, it is consisten. The equations are not equivalent, so they are independent. See Figure 3(a).
2. The graphs are parallel lines. There is no solution common to both equations. othe solution set is ϕ and the sysem is inconsistent. Since the equations are not equivalent, they are independent. See Figure 3(b).
3. The graphs are the same line. Since any solution of one equation of the system is a solution of the other, the solution set is an infinite set of ordered pairs epresenting the points on the line. This type of system is consistent because here is a solution. The equations are equivalent, so they are dependent. See Figure 3(c)

(a)

nguen 3

Solve linear systems (with two equations and

 two variables) by substitution.It can be difficult to read exact coordinates, especially if they are not integers, from a graph. For this reason, we usually use algebraic methods to solve systems.

The substitution method, is most useful for solving linear systems in which one equation is solved or can easily be solved for one variable in terms of the other.

$$
\begin{array}{c|c}
\begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 3
\end{array} & \text { Solving a System by Substitution (cont'd) } \\
\qquad \begin{aligned}
5 x-3 y & =-6 \\
x & =2-y
\end{aligned}
\end{array}
$$

We found y. Now find x by substituting 2 for y in equation (2).

$$
\begin{aligned}
x & =2-y \\
& =2-2=0
\end{aligned}
$$

Thus $x=0$ and $y=2$, giving the ordered pair $(0,2)$. Check this solution in both equations of the original system.
Check:
$5 x-3 y=-6$
(1) $x=2-y$
$5(0)-3(2)=-6$
$0-6=-6$
$0=2-2$
$0=0$
$-6=-6$
True
True
The solution set is $(0,2)$.

$$
{ }^{2) .}{ }_{\text {Slid }}
$$

$$
\text { Slide 4.1- } 10
$$

Solve linear systems (with two equations and two variables) by substitution.

Solving a Linear System by Substitution
Step 1 Solve one of the equations for either variable. If one of the equations has a variable term with coefficient 1 or -1 , choose it, since the substitution method is usually easier this way.

Step 2 Substitute for that variable in the other equation. The result should be an equation with just one variable.

Step 3 Solve the equation from Step 2.
Step 4 Find the other value. Substitute the result from Step 3 into the equation from Step 1 to find the value of the other variable.

Step 5 Check the solution in both of the original equations. Then write the solution set.

CLASSROOM EXAMPLE 4	Solving a System by Substitution	
Solve the system.	$4 x+y=5$	(1)
Solution:	$2 x-3 y=13$	(2)
Step 1 Solve one of the equations for either x or y.		

$$
\begin{aligned}
4 x+y & =5 \\
y & =5-4 x
\end{aligned}
$$

Step 2 Substitute $5-4 x$ into equation for y (2).

$$
2 x-3(5-4 x)=13
$$

Step 3 Solve

$$
\begin{aligned}
2 x-15+12 x & =13 \\
14 x & =28 \\
x & =2
\end{aligned}
$$

CLASSROOM EXAMPLE 4	Solving a System by Substitution (cont'd)		
Step 4 Now find y.	$y=5-4 x$	$4 x+y=5$	(1)
	$y=5-4(2)=-3$	$2 x-3 y=13$	(2)

Step 5 Check the solution $(2,-3)$ in both equations.

$4 x+y=5$	(1)
$4(2)+(-3)=5$	$2 x-3 y=13$
$8-3=5$	$2(2)-3(-3)=13$
$5=5$	$4+9=13$
True	$13=13$
True	

The solution set is $(2,-3)$.

CLASSROOM	
EXAMPLE 5	Solving a System with Fractional Coefficients

$\begin{aligned} \text { Solve the system. }\end{aligned} \quad \begin{aligned}-2 x+5 y & =22 \\ \text { Solution: } & \frac{1}{2} x+\frac{1}{4} y\end{aligned}=\frac{1}{2}$
Clear the fractions in equation (2). Multiply by the LCD, 4.

$$
\begin{align*}
4\left(\frac{1}{2} x+\frac{1}{4} y\right) & =4\left(\frac{1}{2}\right) \tag{2}\\
4 \cdot \frac{1}{2} x+4 \cdot \frac{1}{4} y & =4 \cdot \frac{1}{2} \\
2 x+y & =2 \tag{3}
\end{align*}
$$

Solve equation (3) for $y . \quad 2 x+y=2$

$$
\begin{equation*}
y=2-2 x \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \begin{array}{rlr}
\begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 5
\end{array} & \text { Solving a System with Fractional Coefficients (cont'd) } \\
\text { Substitute } y=2-2 x \text { for } y \text { in equation (1). } & -2 x+5 y=22 \\
-2 x+5 y=22 & \frac{1}{2} x+\frac{1}{4} y=\frac{1}{2} \\
-2 x+5(2-2 x) & =22 \\
-2 x+10-10 x & =22 \\
-12 x+10 & =22 \\
-12 x & =12 \\
x & =-1
\end{array}
\end{align*}
$$

Solve y.

$$
y=2-2 x
$$

$$
y=2-2(-1)
$$

$$
y=2+2=4
$$

A check verifies that the solution set is $\{(-1,4)\}$.

Solve linear systems (with two equations and two

 variables) by elimination.Solving a Linear System by Elimination
Step 1 Write both equations in standard form $A x+B y=C$.
Step 2 Make the coefficients of one pair of variable terms
opposites. Multiply one or both equations by appropriate numbers so that the sum of the coefficients of either the x - or y-terms is 0 .

Step 3 Add the new equations to eliminate a variable. The sum should be an equation with just one variable.

Step 4 Solve the equation from Step 3 for the remaining variable
Step 5 Find the other value. Substitute the result of Step 4 into either of the original equations and solve for the other variable.

Step 6 Check the ordered-pair solution in both of the original equations. Then write the solution set.

CLASSROOM EXAMPLE 6	Solving a System by Elimination
Solve the system.	$-2 x+3 y=-10$
Solution:	$2 x+2 y=5$

Adding the equations together will eliminate x

$$
\begin{aligned}
-2 x+3 y & =-10 \\
2 x+2 y & =5 \\
\hline 5 y & =-5 \\
y & =-1
\end{aligned}
$$

To find x, substitute -1 for y in either equation.

$$
\begin{align*}
& 2 x+2 y=5 \quad(2) \tag{2}\\
& 2 x+2(-1)=5 \\
& 2 x-2=5 \\
& 2 x=7 \quad \text { The solution set is }\left\{\left(\frac{7}{2},-1\right)\right\} . \\
& 20=\frac{7}{2}
\end{align*}
$$

| CLASSROOM
 EXAMPLE 7 | Solving a System by Elimination |
| :--- | :---: | :---: |
| Solve the system. | $2 x+3 y=19$ |
| Solution: | $3 x-7 y=-6$ |

Step 1 Both equations are in standard form.

Step 2 Select a variable to eliminate, say y. Multiply equation (1) by 7 and equation (2) by 3.

Step 3 Add.

$$
\begin{array}{r}
14 x+21 y=133 \\
9 x-21 y=-18 \\
\hline 23 x=115
\end{array}
$$

Step 4 Solve for x.

$$
x=5
$$

$$
\begin{array}{l|r}
\text { CLASSROOM } \\
\text { EXAMPLE } 7 & \text { Solving a System by Elimination (cont'd) } \tag{1}\\
& 2 x+3 y=19 \\
3 x-7 y=-6
\end{array}
$$

Step 5 To find y substitute 5 for x in either equation (1) or equation (2).

$$
\begin{align*}
2 x+3 y & =19 \tag{1}\\
2(5)+3 y & =19 \tag{2}\\
10+3 y & =19 \\
3 y & =9 \\
y & =3
\end{align*}
$$

Step 6 To check substitute 5 for x and 3 for y in both equations (1) and (2).

The ordered pair checks, the solution set is $\{(5,3)\}$.

CLASSROOM EXAMPLE 8	Solving a System of Dependent Equations	
Solve the system.	$2 x+y=6$	(1)
Solution:	$-8 x-4 y=-24$	(2)

Multiply equation (1) by 4 and add the result to equation (2)

$$
\begin{aligned}
8 x+4 y & =24 \\
-8 x-4 y & =-24 \\
\hline 0 & =0
\end{aligned}
$$

Equations (1) and (2) are equivalent and have the same graph. The equations are dependent

The solution set is the set of all points on the line with equation $2 x+y=6$, written in set-builder notation $\{(x, y) \mid 2 x+y=6\}$.

CLASSROOM EXAMPLE 9	Solving an Inconsistent System
Solve the system.	$4 x-3 y=8$
Solution:	$8 x-6 y=14$

Multiply equation (1) by -2 and add the result to equation (2).

$$
\begin{aligned}
-8 x+6 y & =-16 \\
8 x-6 y & =14 \\
0 & =-2
\end{aligned}
$$

The result of adding the equations is a false statement, which indicates the system is inconsistent. The graphs would be parallel lines. There are no ordered pairs that satisfy both equations.

The solution set is \varnothing.

Solving special systems.

Special Cases of Linear Systems
If both variables are eliminated when a system of linear equations is
solved,

1. there are infinitely many solutions if the resulting statement is true;
2. there is no solution if the resulting statement is false.

CLASSROOM EXAMPLE 10	Using Slope-Intercept Form to Determine the Number of Solutions		
Write each equation in slope-intercept form and then tell how many solutions the system has.			
$3 x-6 y=9$	(1)	Solution: Rewrite both equations in y-intercept form.	
$x-2 y=3$	(2)		
$3 x-6 y=9$	(1)	$x-2 y=3$	
$-6 y=-3 x$	$x+9$	$-2 y=-x+3$	
$-6 y=$	$x+9$	$y=\frac{1}{2} x-\frac{3}{2}$	
3	3		
$-2 y=-x+3$			
$y=\frac{1}{2} x-\frac{3}{2}$			
Both lines have the same slope and same y-intercept. They coincide and therefore have infinitely many solutions.			

$$
\begin{align*}
& \text { CLASSROOM } \\
& \text { EXAMPLE } 10 \\
& \text { Using Slope-Intercept Form to Determine the Number of Solutions (cont'd) } \\
& \text { Write each equation in slope-intercept form and then tell how many } \\
& -2 x=5 y+1 \\
& \text { (1) Solution: } \\
& -4 x=10 y+3 \\
& \text { (2) } y \text {-intercept form } \\
& -2 x=5 y+1 \tag{1}\\
& -4 x=10 y+3 \tag{2}\\
& -2 x-1=5 y \\
& -4 x-3=10 y \\
& -\frac{2}{5} x-\frac{1}{5}=y \\
& -\frac{4}{10} x-\frac{3}{10}=y \\
& y=-\frac{2}{5} x-\frac{1}{5} \\
& y=-\frac{2}{5} x-\frac{3}{10} \\
& \text { Both lines have the same slope, but different y-intercepts. They are } \\
& \text { parallel and therefore have no solutions }
\end{align*}
$$

