

Decide whether an ordered pair is a solution of a linear system. The solution set of a linear system of equations contains all ordered pairs that satisfy all the equations of the system at the same time.

	CLASSROOM EXAMPLE 1	Deciding Whe	ther an Ordered Pair is a Solu	tion	
	Is the ordered pair a solution of the given system?				
(-4, 2) $2x + y = -6$		<i>v</i> = -6			
	Solution:	x+3y	<i>y</i> = 2		
	Replace x with -4 and y with 2 in each equation of the system.				
	2x + y =	-6	x + 3y = 2		
	2(-4) + 2 =	-6	-4+3(2)=2		
	-8+2 =	-6	-4 + 6 = 2		
	-6 =	6	2 = 2		
	Tr	ue	True		
	Since (-4, 2) ma	akes both equation	ons true, it is a solution.		
c	Copyright © 2012, 2008, 2004, Pearson Education. Inc. Slide 4.1- 4				

CLASSROOM EXAMPLE 1	Deciding Whet	her an Ordered Pair is a Solution (co	ont'd)
Is the ordered pai	r a solution of th	e given system?	
(3, –12)	2x+y	v = -6	
Solution:	x+3y	v = 2	
Replace x with 3 a	and <i>y</i> with -12 ir	n each equation of the system.	
2x + y =	-6	x + 3y = 2	
2(3)+(-12)=	-6	3 + 3(-12) = 2	
6-12=	-6	3 - 36 = 2	
-6 =	-6	-33 = 2	
Tru	ie	False	
The ordered pair not make both eq	(3, –12) is not a quations true.	solution of the system, since it doe	es
Copyright © 2012, 2008, 2004 Pear	rson Education. Inc.	5	Slide 4.1- 5

CLASSROOM EXAMPLE 3	Solving a S	System b	y Substitution (co	ont'd)
	5x - 3y	v = -6	(1)	
We found y Now	find y by sub	$x = 2 - \frac{1}{2}$	y (2) 2 for vin equation (2)
We found y. Now		- 2 - 1	,	-).
		= 2 - 3 = 2 - 2	2 = 0	
Thus $x = 0$ and $y = 2$, giving the ordered pair (0, 2). Check this solution in both equations of the original system.			this solution	
Check: 5x	-3y = -6	(1)	x = 2 - y	(2)
5(0) - 3	3(2) = -6		0 = 2 - 2	
(-6 = -6		0 = 0	
	-6 = -6		True	
	True		The solution set is	s (0, 2).
Convright @ 2012, 2008, 2004, Pea	rson Education Inc			Slide 4.1- 10

CLASSROOM EXAMPLE 4	Solving a Sys	stem by Substitution (cont'd)
Step 4 Now find y Step 5 Check the	y = $5 - 4$ y = $5 - 4$ solution (2, -3)	4x + y = 5 (1) 4(2) = -3 2x - 3y = 13 (2) B) in both equations.
4x + y = 5 4(2) + (-3) = 5 8 - 3 = 5 5 = 5	5 (1) 5	2x-3y=13 (2) 2(2)-3(-3)=13 4+9=13 13=13
True The solution set is	(2, -3).	True
Convright © 2012, 2008, 2004, Pears	on Education. Inc.	Slide 4.1- 13

CLASSROOM EXAMPLE 5	Solving a System with Fra	ctional Coefficients
Solve the system	-2x + 5y = 22	(1)
Solution:	$\frac{1}{2}x + \frac{1}{4}y = \frac{1}{2}$	(2)
Clear the fraction	s in equation (2). Multiply by t	he LCD, 4.
$4\left(\frac{1}{2}x + \frac{1}{4}y\right) = 4\left(\frac{1}{2}\right)$ $4 \cdot \frac{1}{2}x + 4 \cdot \frac{1}{4}y = 4 \cdot \frac{1}{2}$ $2x + y = 2 \qquad (3)$		
Solve equation (3) for y. $2x + y = 2$ $y = 2$	(3) - 2x
C	no Diversion Inc.	Slide 4.1- 14

CLASSROOM EXAMPLE 5	Solving a Syste	em with Fractional Coefficients (cont	ťd)
Substitute $y = 2 - $	2x for y in equal -2x + 5y = 22	tion (1). $-2x+5y = 22$ 2 $\frac{1}{2}x+\frac{1}{2}y = \frac{1}{2}$	(1) (2)
-2x +	5(2-2x)=2	$2 \qquad 2^{x+4} \qquad 2^{y-2}$	(2)
-2x	+10 - 10x = 2	2	
-12x + 10 = 22			
-12x = 12			
	<i>x</i> = -	-1	
Solve y.			
y = 1 $y = 1$ $y = 2$	2-2x $2-2(-1)$ $2+2=4$	A check verifies that the solution set is $\{(-1, 4)\}$.	

CLASSROOM EXAMPLE 6	Solving a System by Elimination
Solve the system.	-2x + 3y = -10 (1)
Solution:	$2x + 2y = 5 \tag{2}$
Adding the equati	ions together will eliminate x.
	-2x + 3y = -10 (1)
	$2x + 2y = 5 \tag{2}$
	5y = -5
	y = -1
To find x, substitu	ite –1 for y in either equation.
2x + 2y	y = 5 (2)
2x + 2(-1)	$= 5$ The solution set is $\left\{ \left(\frac{7}{2}, -1 \right) \right\}$.
2x - 2	2=5
20	$x = 7$ $x = \frac{7}{2}$
Convright @ 2012, 2008, 2004, Pear	rson Education Int 🗸 Slide 4.1-10

	CLASSROOM EXAMPLE 7	Solving a System by Elimination			
	Solve the system.	$2x + 3y = 19 \tag{1}$			
	Solution:	3x - 7y = -6 (2)			
	Step 1 Both equations are in standard form.				
Step 2 Select a variable to eliminate, say y. Multiply equation (1) by 7 and equation (2) by 3.					
	Step 3 Add.	14x + 21y = 133			
	Step 4 Solve for a	9x - 21y = -18			
		23x = 115			
		x. x = 5			
	opyright © 2012, 2008, 2004, Pear	son Education. Inc. Slide 4.1-18			

CLASSROOM Solving a System by Elimination (cont'd) EXAMPLE 7 2x + 3y = 19(1)3x - 7y = -6(2)Step 5 To find y substitute 5 for x in either equation (1) or equation (2). 2x + 3y = 19(1)2(5) + 3y = 1910 + 3y = 193v = 9v = 3Step 6 To check substitute 5 for x and 3 for y in both equations (1) and (2). The ordered pair checks, the solution set is {(5, 3)}.

Slide 4.1-1

