

- 2. The three planes may have the points of a line in common, so that the infinite set of points that satisfy the equation of the line is the solution of the system. (See Figure 7b).
- 3. The three planes may coincide, so that the solution of the system is the set of all points on a plane. (See Figure 7c).
- The planes may have no points common to all three, so that there is no solution of the system. (See Figures 7d-g).

In the steps that follow, we use the term **focus variable** to identify the first variable to be eliminated in the process. The focus variable will always be present in the **working equation**, which will be used twice to eliminate this variable.

CLASSROOM EXAMPLE 1	Solving a System in T	hree Variables
Solve the system	x + y + z = 2	(1)
Solution:	x - y + 2z = 2 $-x + 2y - z = 2$	2 (2) =1 (3)
Step 1 Select the the working	variable y as the focus v g equation.	ariable and equation (1) as
	x + y + z = 2	(1)
Step 2 Multiplying eliminated	can be skipped as the fo when adding equations	ocus variable can be (1) and (2)
	x + y + z = 2	(1)
	x - y + 2z = 2	(2)
2	2x + 3z = 4	(4)

CLASSROOM EXAMPLE 1	Solving a System in Th	nree Variables (cont'd))
Step 4 Write the e variables and 3 as eliminate	equations in two that result in Steps 2 a system, then solve to z. Substitute the value of	x + y + z = 2 $x - y + 2z = 2$ $-x + 2y - z = 1$	 (1) (2) (3)
$\frac{2x+3z}{-3x-3z}$	$= 4 \qquad (4)$ = -3 (5) = 1 or $x = -1$	2(-1) + 3z = 4 (4)-2 + 3z = 43z = 6z = 2	•)
Step 5 Substitute	x = -1 for x and 2 for z in equ -1 + y + 2 = 2 y + 1 = 2 y = 1	2 – 2 uation (1) to find <i>y</i> . (1)	
Convright @ 2012_2008_2004_Pea	rson Education Inc		Slide 4.2- 10

EXAMPLE 2	Solving a	System of	Equations v	with Missing	Tern
Solve the system					
Solution:	:	x - y = 6	(1)		
	2y	+5z = 1	(2)		
	3x	-4z = 8	(3)		
Since equation (3 and (2). Multiply e	b) is missing equation (1)	<i>y</i> , eliminate by 2 and ac	y again fron	n equations (1 to equation (2))).
Since equation (3) and (2). Multiply $e^{-x-y} = 6$	i) is missing equation (1)	y, eliminate by 2 and ac 2x - 2y	y again from d the result $= 12$	n equations (1 to equation (2) $(1) \times 2$)).
Since equation (3 and (2). Multiply $x - y = 6$ 2y + 5z = 1	(1) is missing equation (1) i (1) (2)	y, eliminate by 2 and ac 2x - 2y 2y	y again from d the result $= 12$ +5z = 1	to equations (1 to equation (2) $(1) \times 2$ (2))).
Since equation (3 and (2). Multiply $x - y = 6$ 2y + 5z = 1	(1) (2) (1) (2)	y, eliminate by 2 and ac $2x - 2y$ $\frac{2y}{2x}$	y again from d the result = = 12 +5z = 1 +5z = 13	$(1) \times 2$ (2) $(1) \times 2$ (2) (4))).
Since equation (3 and (2). Multiply $x - y = 6$ 2y + 5z = 1	aquation (1) (1) (2) (2)	y, eliminate by 2 and ac $\frac{2x - 2y}{2y}$	y again from d the result = 12 $+ 5z = 1$ $+ 5z = 13$	(1)×2 (2) (4))).

CLASSROOM EXAMPLE 2	Solving	a System of Equat	ions with Missing Terms (cont'd
Use equation (4) equation (4) by 3) together 3 and equ	with equation (3 ation (3) by –2.⊺	b) to eliminate x. Multiply Then add the results.
2x + 5 $3x - 4x$	5z = 13 z = 8	(4)×(3) (3)×(−2)	6x + 15z = 39 $-6x + 8z = -16$
			23z = 23 $z = 1$

CLASSROOM
EXAMPLE 2Solving a System of Equations with Missing Terms (cont'd)Substitute 1 for z in equation (2) to find y.
$$2y + 5z = 1$$
 $2y + 5z = 1$ $2y + 5 = 1$ $2y = -4$ $y = -2$ Substitute -2 for y in (1) to find x. $x - y = 6$ $x - (-2) = 6$ $x + 2 = 6$ Check (4, -2, 1) in each of the original equations to verify that it is the solution set.

CLASSROOM EXAMPLE 3	Solving an Inconsistent System with Three Va	riables
Solve the system		
	3x - 5y + 2z = 1 (1)	
	5x + 8y - z = 4 (2)	
Solution:	-6x + 10y - 4z = 5 (3)	
Multiply equation	(1) by 2 and add the result to equation (3).	
6x - 10y	$+4z = 2 \qquad (1) \times 2$	
-6x+10y	$-4z = 5 \qquad (3)$	
	0 = 7	
Since a false state solution set is \emptyset .	ement results, the system is inconsistent. The)
Copyright © 2012, 2008, 2004, Pea	son Education. Inc	Slide 4.2- 15
 Convright © 2012, 2008, 2004, Pea	son Education_Inc	Slide 4.2- 15

	CLASSROOM EXAMPLE 4	Solving a System of Dependent Equations with Three Variables
	Solve the system.	
		x - y + z = 4
		-3x + 3y - 3z = -12
	Solution:	2x - 2y + 2z = 8
	Since equation (2 equation (1), the t same graph.) is –3 times equation (1) and equation (3) is 2 times hree equations are dependent. All three have the
	The solution set is	$s \{(x, y, z) \mid x - y + z = 4\}.$
0	Convright @ 2012_2008_2004_Pear	son Education. Inc. Slide 4.2-16

EXAMPLE 5	Solving Another Special System
Solve the system	2x + 3y - z = 8
Solution:	$\frac{1}{2}x + \frac{3}{4}y - \frac{1}{4}z = 2$
	3 1 - 6
	$x + \frac{1}{2}y - \frac{1}{2}z = -6$
Eliminate the frac	$x + \frac{1}{2}y - \frac{1}{2}z = -6$ tions in equations (2) and (3).
Eliminate the frac	$x + \frac{1}{2}y - \frac{1}{2}z = -6$ tions in equations (2) and (3). $2x + 3y - z = 8 \qquad (1)$
Eliminate the frac Multiply equation	$x + \frac{1}{2}y - \frac{1}{2}z = -6$ tions in equations (2) and (3). (2) by 4. $2x + 3y - z = 8$ (1) $2x + 3y - z = 8$ (4)

CLASSROOM EXAMPLE 5	Solving Another Specia	al System (cont'd)
	2x + 3y - z = 8	(1)
	2x + 3y - z = 8	(4)
	2x + 3y - z = -12	(5)
Equations (1) and	d (4) are dependent (they h	ave the same graph).
Equations (1) and coefficients but di in common (the p	d (5) are not equivalent. Sir fferent constant terms, the lanes are parallel).	nce they have the same ir graphs have no points
Thus the system	is inconsistent and the solu	ution set is \emptyset .
C		Slide 4.2- 18