6.1 Greatest Common Factors and Factoring by Grouping

Objectives
1 Factor out the greatest common factor.
2 Factor by grouping.

Greatest Common Factors and Factoring by Grouping

Writing a polynomial as the product of two or more simpler polynomials is called factoring the polynomial.

$$
\begin{array}{ll}
3 x(5 x-2)=15 x^{2}-6 x & \text { Multiplying } \\
15 x^{2}-6 x=3 x(5 x-2) & \text { Factoring }
\end{array}
$$

Factoring "undoes" or reverses, multiplying.

Factor out the greatest common factor.

The first step in factoring a polynomial is to find the greatest common factor for the terms of the polynomial.

The greatest common factor (GCF) is the largest term that is a factor of all terms in the polynomial.

```
CLASSROOM Factoring Out the Greatest Common Factor
EXAMPLE }
Factor out the greatest common factor.
7k+28
    Solution:
    Since 7 is the GCF; factor }7\mathrm{ from each term.
    = 7.k+7.4
    =7(k+4)
Check:
    凤
    7(k+4)=7k+28 (Original polynomial)
```

```
CLASSROOM
EXAMPLE 1
            Solution:
32m+24
    = 8}\cdot4m+8\cdot
    =8(4m+3)
8a-9
    There is no common factor other than 1.
5z+5
    = 5\cdotz+5\cdot1
    =5(z+1)
```

\section*{| CLASSROOM | |
| :--- | :--- |
| EXAMPLE 2 | Factoring Out the Greatest Common Factor (cont'd) |}

Factor out the greatest common factor
$5 m^{4} x^{3}+15 m^{5} x^{6}-20 m^{4} x^{6}$
Solution:

The numerical part of the GCF is 5

The least exponent that occurs on m is m^{4}
The least exponent that appears on x is x^{3}

The GCF is $5 m^{4} x^{3}$.
$=5 m^{4} x^{3} \cdot 1+5 m^{4} x^{3} \cdot 3 m x^{3}-5 m^{4} x^{3} \cdot 4 x^{3}$
$=5 m^{4} x^{3}\left(1+3 m x^{3}-4 x^{3}\right)$

\section*{| ELASSROOM | Factoring Out a Binomial Facto |
| :--- | :--- |}

Factor out the greatest common factor.
$(a+2)(a-3)+(a+2)(a+6)$

Solution:

The GCF is the binomial $a+2$.
$=(a+2)[(a-3)+(a+6)]$
$=(a+2)(a-3+a+6)$
$=(a+2)(2 a+3)$
$(y-1)(y+3)-(y-1)(y+4)$
$=(y-1)[(y+3)-(y+4)]$
$=(y-1)(y+3-y-4)$
$=(y-1)(-1)$ or $-y+1$

EXAMPIE 3
 EXAMPLE 3

Factoring Out a Binomial Factor (cont'd)

CLASSROOM Factoring Out a Negative Common Factort EXAMPLE 4
 Factor $-6 r^{2}+5 r$ in two ways

Solution:

r could be used as the common factor giving
$=r \cdot-6 r+r \cdot 5$
$=r(-6 r+5)$

Because of the negative sign, $-r$ could also be used as the common factor.
$=-r(6 r)+(-r)(5)$
$=-r(6 r-5)$

Factoring by grouping.

Sometimes individual terms of a polynomial have a greatest common factor of 1, but it still may be possible to factor the polynomial by using a process called factoring by grouping

We usually factor by grouping when a polynomial has more than three terms.

Factor $(6 p+r p)$ as $p(6+r)$ and factor $(-6 q-r q)$ as $-q(6+r)$

$$
\begin{aligned}
& =(6 p+r p)+(-6 q-r q) \\
& =p(6+r)-q(6+r) \\
& =(6+r)(p-q)
\end{aligned}
$$

Factoring by grouping.

Factoring by Grouping

Step 1 Group terms. Collect the terms into groups so that each group has a common factor.

Step 2 Factor within groups. Factor out the common factor in each group.

Step 3 Factor the entire polynomial. If each group now has a common factor, factor it out. If not, try a different grouping.

Always check the factored form by multiplying.

	CLASSROOM EXAMPLE 7	Factoring by	
	Factor.$k n+m n-k-m$		
	Solution:		
	Group the terms:		
	$=(k n+m n)+(-k-m)$		
	$=n(k+m)+(-1)(k+m)$		
	$=(k+m)(n-1)$		
	Convighte2012.2008.2004 Pearson Education_lnc._ Slide 6.1-15		

CLASSROOM EXAMPLE 8	Rearranging Terms before Factoring by Grouping
Factor.$10 x^{2} y^{2}-18+15 y^{2}-12 x^{2}$	
Solution:	
Group the terms so that there is a common factor in the first two terms and a common factor in the last two terms.	
$=\left(10 x^{2} y^{2}+15 y^{2}\right)+\left(-12 x^{2}-18\right)$	
$=5 y^{2}\left(2 x^{2}+3\right)-6\left(2 x^{2}+3\right)$	
$=\left(2 x^{2}+3\right)\left(5 y^{2}-6\right)$	
Conviahte2012.2008.2004. P	SonEducation_Unc_ Slide 6.1-16

