6.2 Factoring Trinomials

Objectives
1 Factor trinomials when the coefficient of the quadratic term is 1 .
2 Factor trinomials when the coefficient of the quadratic term is not 1.

3 Use an alternative method for factoring trinomials.
4 Factor by substitution.

Factor trinomials when the coefficient of the quadratic term is 1.

Factoring $x^{2}+b x+c$

Step 1 Find pairs whose product is \boldsymbol{c}. Find all pairs of integers whose product is c, the third term of the trinomial.

Step 2 Find pairs whose sum is b. Choose the pair whose sum is b, the coefficient of the middle term.

If there are no such integers, the polynomials cannot be factored.

A polynomial that cannot be factored with integer coefficient is a prime polynomial.

CLASSROOM EXAMPLE 1	Factoring Trinomials in $\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{b x}+\boldsymbol{c}$ Form (cont'd)
The coefficient of the middle term is 9 , so the required numbers are 5 and 4. The factored form of $a^{2}+9 a+20$ is	
	$(a+5)(a+4)$.
Check $(a+5)(a+4)=a^{2}+9 a+20$	


```
CLASSROOM Recognizing a Prime Polynomial
EXAMPLE 2
Factor t}\mp@subsup{t}{}{2}+3t-5
```


Solution:

Look for two expressions whose product is -5 and whose sum is 3 . There are no such quantities. Therefore, the trinomial cannot be factored and is prime

CLASSROOM EXAMPLE 3
Factor $p^{2}-5 p q+6 q^{2}$.

Solution

Look for two expressions whose product is $6 q^{2}$ and whose sum is $5 q$. The quantities $-3 q$ and $-2 q$ have the necessary product and sum, so

$$
p^{2}-5 p q+6 q^{2}=(p-3 q)(p-2 q)
$$

CLASSROOM	
EXAMPLE 4	Factoring a Trinomial with a Common Factor

Factor $3 a^{3}+12 a^{2}-15 a$.
Solution:
Start by factoring out the GCF, 3a

$$
=3 a\left(a^{2}+4 a-5\right)
$$

To factor $a^{2}+4 a-5$, look for two integers whose product is -5 and whose sum is 4 . The necessary integers are -1 and 5 . Remember to write the common factor $3 a$ as part of the answer.

$$
=3 a(a-1)(a+5)
$$

When factoring, always look for a common factor first. Remember to write the common factor as part of the answer.

Objective 2

Factor trinomials when the coefficient of the quadratic term is not 1.

CLASSROOM	
EXAMPLE 5	Factoring a Trinomial in $a x^{2}+b x+c$ Form

Factor $6 k^{2}-19 k+10$.
Solution:

The product as is $6(10)=60$. Look for two integers whose products is
60 and whose sum is -19 . The necessary integers are -15 and -4 . Write $-19 k$ as $-15 k-4 k$ and then factor by grouping

$$
\begin{aligned}
& =6 k^{2}-15 k-4 k+10 \\
& =\left(6 k^{2}-15 k\right)+(-4 k+10) \\
& =3 k(2 k-5)-2(2 k-5) \\
& =(2 k-5)(3 k-2)
\end{aligned}
$$

CLASSROOM
EXAMPLE 6
Factoring Trinomials in $a x^{2}+b x+c$ Form
Factor each trinomial. Alternative Method
Solution:
$10 x^{2}+17 x+3$
By trial and error, the following are factored.

$$
=(5 x+1)(2 x+3)
$$

$6 r^{2}+13 r-5$

$$
=(2 r+5)(3 r-1)
$$

Use an alternative method for factoring trinomials.

 Factoring $a x^{2}+b x+c$ (GCF of a, b, c is 1)Step 1 Find pairs whose product is a. Write all pairs of integer factors of a, the coefficient of the second-degree term.

Step 2 Find pairs whose product is c. Write all pairs of integer factors of c, the last term.

Step 3 Choose inner and outer terms. Use FOIL and various combinations of the factors from Steps 1 and 2 until the necessary middle term is found.

If no such combinations exist, the trinomial is prime.

CLASSROOM EXAMPLE 7
 Factoring a Trinomial in Two Variables

Factor $6 m^{2}+7 m n-5 n^{2}$.

Solution

Try some possibilities.

$(6 m+n)(m-5 n)$	$=6 m^{2}-29 m n-5 n^{2}$	No
$(6 m-5 n)(m+n)$	$=6 m^{2}+m n-5 n^{2}$	No
$(3 m+n)(2 m-5 n)$	$=6 m^{2}-13 m n-5 n^{2}$	No
$(3 m+5 n)(2 m-n)$	$=6 m^{2}+7 m n-5 n^{2}$	Yes

The correct factoring is

$$
=(3 m+5 n)(2 m-n)
$$

CLASSROOM
EXAMPLE 8

Factor $-2 p^{2}-5 p+12$.

Solution:

First factor out -1 , then proceed.
$=-1\left(2 p^{2}+5 p-12\right)$
$=-1(p+4)(2 p-3)$
$=-(p+4)(2 p-3)$
$\begin{aligned} & \text { CLASSROOM } \\ & \text { EXAMPLE } 9\end{aligned}$ Factoring a Trinomial with a Common Factor
Factor $4 m^{3}+2 m^{2}-$
$6 m$.
Solution:
First, factor out the GCF, $2 m$.
$=2 m\left(2 m^{2}+m-3\right)$
Look for two integers whose product is $2(-3)=-6$ and whose sum
is 1 . The integers are 3 and -2 .
$=2 m\left(2 m^{2}+3 m-2 m-3\right)$
$=2 m[m(2 m+3)-1(2 m+3)]$
$=2 m[(2 m+3)(m-1)]$
$=2 m(2 m+3)(m-1)$

CLASSROOM EXAMPLE 10
 Factor $8(z+5)^{2}-2(z+5)-3$.

Solution:
$=8 x^{2}-2 x-3 \quad$ Let $x=z+5$.
$=(2 x+1)(4 x-3)$

Now replace x with $z+5$.
$=[2(z+5)+1][4(z+5)-3]$
$=(2 z+10+1)(4 z+20-3)$
$=(2 z+11)(4 z+17)$

$$
\begin{aligned}
& \begin{array}{l}
\text { CLASSROOM } \\
\text { EXAMPLE } 11
\end{array} \\
& \begin{array}{ll}
\text { Factor } 6 r^{4}-13 r^{2}+5 . & \text { Factoring a Trinomial i } \\
\text { Solution: } & \text { Let } x=r^{2} . \\
=6\left(r^{2}\right)^{2}-13 r^{2}+5 & \text { Factor. } \\
=6 x^{2}-13 x+5 & x=r^{2} \\
=(3 x-5)(2 x-1) & \\
=\left(3 r^{2}-5\right)\left(2 r^{2}-1\right) &
\end{array}
\end{aligned}
$$

