6.3 Special Factoring

Objectives
1 Factor a difference of squares.
2 Factor a perfect square trinomial.

3 Factor a difference of cubes.
4 Factor a sum of cubes.

Factor a difference of squares

Difference of Squares
$x^{2}-y^{2}=(x+y)(x-y)$

$$
\begin{aligned}
& \text { CLASSROOM } \\
& \text { EXAMPLE } 1 \\
& \text { Factor each polynomial. } \\
& p^{2}-100 \\
& \text { Solution: } \\
& =p^{2}-10^{2} \\
& =(p+10)(p-10) \\
& 2 x^{2}-18 \\
& =2\left(x^{2}-9\right) \\
& =2\left(x^{2}-3^{2}\right) \\
& =2(x+3)(x-3) \\
& 9 a^{2}-16 b^{2} \\
& =(3 a)^{2}-(4 b)^{2} \\
& =(3 a+4 b)(3 a-4 b)
\end{aligned}
$$

Objective 2

Factor a prefect square trinomial.

| CLASSROOM |
| :--- | :--- |
| EXAMPLE 2 | Factoring Perfect Square Trinomials

Factor the polynomial.
$49 z^{2}-14 z+1$

Solution:

$=(7 z)^{2}-14 z+1^{2}$
$=(7 z-1)^{2}$
Check. $2(7 z)(-1)=-14 z$, which is the middle term. Thus, $49 z^{2}-14 z+1=(7 z-1)^{2}$.

CLASSROOM	
EXAMPLE 2	Factoring Perfect Square Trinomials (cont'd)

Factor the polynomial.
$9 a^{2}+48 a b+64 b^{2}$
Solution:
$=(3 a)^{2}+48 a b+(8 b)^{2}$
$=(3 a+8 b)^{2}$

Check. $2(3 a)(8 b)=48 a b$, which is the middle term Thus, $9 a^{2}+48 a b+64 b^{2}=(3 a)^{2}+48 a b+(8 b)^{2}=(3 a+8 b)^{2}$

CLASSROOM
Factoring Perfect Square Trinomials (cont'd)
Factor the polynomial.
$x^{2}-2 x+1-y^{2}$
Solution:
$=\left(x^{2}-2 x+1\right)-y^{2} \quad$ Factor by grouping.
$=(x-1)^{2}-y^{2} \quad$ Factor the perfect square trinomial.

This is the difference of two squares.
$=[(x-1)+y][(x-1)-y]$
$=(x-1+y)(x-1-y)$

Objective 3

Factor a difference of cubes.

Factor a difference of cubes.
Difference of Cubes

$$
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)
$$

CLASSROOM

Factor the polynomial.
$x^{3}-1000$
Solution:

CLASSROOM	
EXAMPLE 3	Factoring Differences of Cubes (cont'd)

Factor each polynomial.
$8 k^{3}-y^{3}$

Solution:

$=(2 k)^{3}-y^{3}$
$=(2 k-y)\left[(2 k)^{2}+2 k(y)+y^{2}\right]$
$=(2 k-y)\left(4 k^{2}+2 k y+y^{2}\right)$
$27 m^{3}-64 n^{3}$

$$
\begin{aligned}
& =(3 m)^{3}-(4 n)^{3} \\
& =(3 m-4 n)\left[(3 m)^{2}+3 m(4 n)+(4 n)^{2}\right] \\
& =(3 m-4 n)\left(9 m^{2}+12 m n+16 n^{2}\right)
\end{aligned}
$$

Objective 4

Factor a sum of cubes.

Slide 6.3-14

Factor a sum of cubes.

Sum of Cubes
$x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

The sign of the second term in the binomial factor of a sum or difference of
cubes is always the same as the sign in the original polynomial. In the trinomia
factor, the first and last terms are always positive. The sign of the middle term
is the opposite of the sign of the second term in the binomial factor

$$
\begin{aligned}
& \text { CLASSROOM Factoring Sums of Cubes } \\
& \text { EXAMPLE } 4 \\
& \text { Factor each polynomial } \\
& 8 p^{3}+125 \\
& \text { Solution: } \\
& =(2 p)^{3}+5^{3} \\
& =(2 p+5)\left[(2 p)^{2}-(2 p)(5)+5^{2}\right] \\
& =(2 p+5)\left(4 p^{2}-10 p+25\right) \\
& 64 m^{3}+125 n^{3} \\
& =(4 m)^{3}+(5 n)^{3} \\
& =(4 m+5 n)\left[(4 m)^{2}-4 m(5 n)+(5 n)^{2}\right] \\
& =(4 m+5 n)\left(16 m^{2}-20 m n+25 n^{2}\right)
\end{aligned}
$$

CLASSROOM

Factoring Sums of Cubes (cont'd)
EXAMPLE 4
Factor each polynomial.
$2 x^{3}+2000$

Solution:

$=2\left(x^{3}+1000\right)$
$=2\left(x^{3}+10^{3}\right)$
$=2(x+10)\left(x^{2}-10 x+10^{2}\right)$
$=2(x+10)\left(x^{2}-10 x+100\right)$
$(a-4)^{3}+b^{3}$

$$
\begin{aligned}
& =[(a-4)+b]\left[(a-4)^{2}-(a-4) b+b^{2}\right. \\
& =(a-4+b)\left(a^{2}-8 a+16-a b+4 b+b^{2}\right)
\end{aligned}
$$

