6.4) A General Approach to Factoring

Objectives
1 Factor out any common factor.
2 Factor binomials.
3 Factor trinomials.
4 Factor polynomials of more than three terms.

A General Approach to Factoring
 Factoring a Polynomial

Step 1 Factor out any common factor.

Step 2 If the polynomial is a binomial, check to see if it is the difference of squares, a difference of cubes, or a sum of cubes.

If the polynomial is a trinomial, check to see if it is a perfect square trinomial. If it is not, factor as in Section 6.2.

If the polynomial has more than three terms, try to factor by grouping.

Step 3 Check the factored form by multiplying.

Objective 2

$$
\text { EXAMPLE } 1
$$

ELASSROOM
Factoring Out a Common Factor
Factor each polynomial.
$2 x^{3}+10 x^{2}-4 x$
Solution:

The GCF is $2 x$.
$=2 x\left(x^{2}+5 x-2\right)$
$12 m(p-q)-7 n(p-q)$
The GCF is $(p-q)$
$=(p-q)(12 m-7 n)$

Factor binomials.

Factoring a Binomial

For a binomial (two terms), check for the following:

Difference of Squares:

$$
x^{2}-y^{2}=(x-y)(x+y)
$$

Difference of Cubes:

$$
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)
$$

Sum of Cubes:
$x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

CLASSROOM
EXAMPLE 2
Factoring Binomials
Factor each binomial, if possible.
$36 x^{2}-y^{2}$
Solution:
Difference of squares
$=(6 x)^{2}-(y)^{2}$
$=(6 x-y)(6 x+y)$
$4 t^{2}+1$

The binomial is prime. It is the sum of squares.
$125 x^{3}-27 y^{3}=$
$=(5 x-3 y)\left[(5 x)^{2}+(5 x)(3 y)+(3 y)^{2}\right]$
$=(5 x-3 y)\left(25 x^{2}+15 x y+9 y^{2}\right)$

Factor trinomials.

Factoring a Trinomial
For a trinomial (three terms), decide whether it is a perfect square trinomial of either of these forms $x^{2}+2 x y+y^{2}=(x+y)^{2}$ $x^{2}-2 x y+y^{2}=(x-y)^{2}$ or \quad If not, use the methods of Section 6.2.

CLASSROOM EXAMPLE 3
 Factoring Trinomials

Factor each trinomial
$16 m^{2}+56 m+49$
Solution:
$=(4 m+7)^{2} \quad$ Perfect square trinomial
$8 t^{2}-13 t+5$

Two integer factors whose sum is $8(5)=40$ and whose sum
is -13 are -5 and -8
$=8 t^{2}-5 t-8 t+5$
$=t(8 t-5)-1(8 t-5)$
$=(8 t-5)(t-1)$

CLASSROOM
EXAMPLE 3

Factor the trinomial.

$6 x^{2}-3 x-63$
Solution:
Factor out the GCF of 3 .
$=3\left(2 x^{2}-x-21\right)$
\quadTwo factors whose product is $2(-21)=-42$ and whose sum is -1 are -7 and 6. $=3\left[2 x^{2}-7 x+6 x-21\right]$ $=3[x(2 x-7)+3(2 x-7)]$ $=3(2 x-7)(x+3)$

Objective 3

Factor polynomials of more than three terms.

```
CLASSROOM 
Factor each polynomial.
p
    Solution:
    =( (p}-2p\mp@subsup{q}{}{2})+(\mp@subsup{p}{}{2}q-2\mp@subsup{q}{}{3}
    =p(\mp@subsup{p}{}{2}-2\mp@subsup{q}{}{2})+q(\mp@subsup{p}{}{2}-2\mp@subsup{q}{}{2})
    = (p}\mp@subsup{p}{}{2}-2\mp@subsup{q}{}{2})(p+q
9x}\mp@subsup{}{2}{+}+24x+16-\mp@subsup{y}{}{2
    =(9\mp@subsup{x}{}{2}+24x+16)-\mp@subsup{y}{}{2}
    = (3x+4)2}-\mp@subsup{y}{}{2
    = [(3x+4)+y)][(3x+4)-y)]
    =(3x+4+y)(3x+4-y)```

