6.5 Solving Equations by Factoring

Objectives
1 Learn and use the zero-factor property.
2 Solve applied problems that require the zero-factor property.
3 Solve a formula for a specified variable, where factoring is necessary.
Solve $(8 x+3)(2 x+1)=0$.
Solution:
By the zero-factor property, either

$$
\begin{aligned}
& 8 x+3=0 \text { or } 2 x+1=0 \\
& 8 x+3=0 \quad \text { or } \quad 2 x+1=0 \\
& 8 x=-3 \quad \text { or } \quad 2 x=-1 \\
& x=-\frac{3}{8} \quad \text { or } \quad x=-\frac{1}{2}
\end{aligned}
$$

Check the two solutions by substitution into the original equation.

Learn and use the zero-factor property.

CLASSROOM EXAMPLE 1

Zero-Factor Property

If two numbers have a product of 0 , then at least one of the numbers must be 0 .

That is, if $a b=0$, then either $a=0$ or $b=0$.
$(8 x+3)(2 x+1)=0$.

$$
\begin{array}{r|r}
\left((8)\left(-\frac{3}{8}\right)+3\right)\left((2)\left(-\frac{3}{8}\right)+1\right)=0 & \left((8)\left(-\frac{1}{2}\right)+3\right)\left((2)\left(-\frac{1}{2}\right)+1\right)=0 \\
(-3+3)\left(-\frac{6}{8}+\frac{8}{8}\right)=0 & (-4+3)(0)=0 \\
0=0 & 0=0 \\
\text { True } & \text { True }
\end{array}
$$

Both solutions check; the solution set is $\left\{-\frac{3}{8},-\frac{1}{2}\right\}$.

```
Learn and use the zero-factor property.
```


Quadratic Equation

```
An equation that can be written in the form
\[
a x^{2}+b x+c=0
\]

\section*{Learn and use the zero-factor property. \\ Solving a Quadratic Equation by Factoring}

Step 1 Write in standard form. Rewrite the equation if necessary so that one side is 0 .

Step 2 Factor the polynomial.
Step 3 Use the zero-factor property. Set each variable factor equal to 0 .

Step 4 Find the solution(s). Solve each equation formed in Step 3.
Step 5 Check each solution in the original equation.

\begin{tabular}{l|l|}
\hline CLASSROOM \\
EXAMPLE 2 & Solving Quadratic Equations by Factoring (cont'd)
\end{tabular}
Solve the equation.
\(16 m^{2}+24 m+9=0\)
Solution:
Step 1 Standard form. Already in standard form.
Step 2 Factor. \(\quad(4 m+3)^{2}=0\)
Step 3 Zero-factor. \(\quad 4 m+3=0\)
Step 4 Solve.
\[
4 m=-3
\]
\[
m=\frac{-3}{4}
\]

Step 5 Check. \(16\left(\frac{-3}{4}\right)^{2}+24\left(\frac{-3}{4}\right)+9=0\)
\[
9-18+9=0
\]

The solution set is \(\left\{-\frac{3}{4}\right\}\).
\(0=0 \quad\) True


CLASSROOM
EXAMPLE 5
Solving an Equation That Requires Rewriting
EXAMPLE 5
Solve \((x+6)(x-2)=2+x-10\).

\section*{Solution:}
\[
\left.\left.\begin{array}{rlrl}
x^{2}+4 x-12 & =x-8 & & \text { Multiply. } \\
x^{2}+3 x-4 & =0 & & \text { Standard form. } \\
(x-1)(x+4) & =0 & & \text { Factor. } \\
x-1 & =0 & \text { or } & x+4
\end{array}\right)=0 \begin{array}{rlrl}
x & =1 & \text { or } & x
\end{array}\right)
\]

Check that the solution set is \(\{-4,1\}\).

\[
\begin{aligned}
& \begin{array}{c|c}
\text { CLASSROOM } \\
\text { EXAMPLE } 6 & \text { Solving an Equation of Degree } 3
\end{array} \\
& \text { Solve } 3 x^{3}+x^{2}=4 x \\
& 3 x^{3}+x^{2}-4 x=0 \quad \text { Standard form. } \\
& x\left(3 x^{2}+x-4\right)=0 \quad \text { Factor out } \boldsymbol{n} . \\
& x(3 x+4)(x-1)=0 \\
& x=0 \quad \text { or } \quad 3 x+4=0 \quad \text { or } \quad \begin{array}{rlrl}
x-1 & =0 \\
x & =-\frac{4}{3} & & x
\end{array} \\
& \text { Check that the solution set is }\left\{-\frac{4}{3}, 0,1\right\} \text {. }
\end{aligned}
\]
\begin{tabular}{c|c} 
CLASSROOM \\
EXAMPLE 7 & Using a Quadratic Equation in an Application
\end{tabular}

The length of a room is 2 m less than three times the width. The area of the room is \(96 \mathrm{~m}^{2}\). Find the width of the room.

\section*{Solution:}

Step 1 Read the problem again. There will be one answer.

Step 2 Assign a variable.

Let \(x=\) the width of the room.
Let \(3 x-2=\) the length of the room.
The area is 96 .

\begin{tabular}{l|l} 
CLASSROOM \\
EXAMPLE 7 & Using a Quadratic Equation in an Application (cont'd)
\end{tabular}
Step 3 Write an equation. The area of a rectangle is the length times the width.
\(A=l w\)
\(96=(3 x-2) x\)
Step 4 Solve.
\[
\begin{aligned}
96 & =(3 x-2) x \\
96 & =3 x^{2}-2 x \\
0 & =3 x^{2}-2 x-96 \\
0 & =(3 x+16)(x-6)
\end{aligned}
\]
\[
\left.\begin{array}{rlrr}
3 x+16 & =0 & \text { or } & x-6=0 \\
x & x=6
\end{array} \quad x \begin{array}{|c} 
\\
x
\end{array}\right)
\]

\section*{Step 6 Check.} \(3(6)-2=16\).

\section*{CLASSROOM EXAMPLE 7 Using a Quadratic Equation in an Application (cont'd)}

Step 5 State the answer.
A distance cannot be negative, so reject \(-\frac{16}{3}\) as a solution.
The only possible solution is 6 , so the width of the room is 6 m .

The length is 2 m less than three times the width, the length would be
    solution of the equation quar not satisfy the
    physical requirements of the problem. Reject
    such solutions as valid answers.
\(\square\)

\section*{Objective 3}

\section*{Solve a formula for a specified variable, where factoring is necessary.}
```

It will reach a height of 256 feet in 4 seconds.
CLASSROOM Using a Quadratic Function in an Application
EXAMPLE }
If a small rocket is launched vertically upward from ground level with
an initial velocity of }128\textrm{ft}\mathrm{ per sec, then its height in feet after t
seconds is a function defined by h(t)=-16t2 + 128t if air resistance is
neglected. How long will it take the rocket to reach a height of }25
negle
Solution:
We let }h(t)=256\mathrm{ and solve for }
256=-16t2}+128
16t ' - 128t+256=0 Divide by 16.
t}\mp@subsup{t}{}{2}-8t+16=
(t-4)}\mp@subsup{)}{}{2}=
t-4=0
4}=

```
\(A=2 H W+2 L W+2 L H\)
\[
\begin{aligned}
& \text { Solution: } \\
& A-2 L H=2 H W+2 L W \\
& A-2 L H=W(2 H+2 L) \\
& \frac{A-2 L H}{2 H+2 L}=W \quad \text { or } \quad \mathrm{W}=\frac{A-2 L H}{2 H+2 L}
\end{aligned}
\]```

