6.1 Greatest Common Factors and Factoring by Grouping

Objectives
1 Factor out the greatest common factor.
2 Factor by grouping.

Greatest Common Factors and Factoring by Grouping

Writing a polynomial as the product of two or more simpler polynomials is called factoring the polynomial.

$$
\begin{array}{ll}
3 x(5 x-2)=15 x^{2}-6 x & \text { Multiplying } \\
15 x^{2}-6 x=3 x(5 x-2) & \text { Factoring }
\end{array}
$$

Factoring "undoes" or reverses, multiplying.

Factor out the greatest common factor.

The first step in factoring a polynomial is to find the greatest common factor for the terms of the polynomial.

The greatest common factor (GCF) is the largest term that is a factor of all terms in the polynomial.

```
CLASSROOM Factoring Out the Greatest Common Factor
EXAMPLE }
Factor out the greatest common factor.
7k+28
    Solution:
    Since 7 is the GCF; factor }7\mathrm{ from each term.
    = 7.k+7.4
    =7(k+4)
Check:
    凤
    7(k+4)=7k+28 (Original polynomial)
```

```
CLASSROOM
EXAMPLE 1
            Solution:
32m+24
    = 8}\cdot4m+8\cdot
    =8(4m+3)
8a-9
    There is no common factor other than 1.
5z+5
    = 5\cdotz+5\cdot1
    =5(z+1)
```

\section*{| CLASSROOM | |
| :--- | :--- |
| EXAMPLE 2 | Factoring Out the Greatest Common Factor (cont'd) |}

Factor out the greatest common factor
$5 m^{4} x^{3}+15 m^{5} x^{6}-20 m^{4} x^{6}$
Solution:

The numerical part of the GCF is 5

The least exponent that occurs on m is m^{4}
The least exponent that appears on x is x^{3}

The GCF is $5 m^{4} x^{3}$.
$=5 m^{4} x^{3} \cdot 1+5 m^{4} x^{3} \cdot 3 m x^{3}-5 m^{4} x^{3} \cdot 4 x^{3}$
$=5 m^{4} x^{3}\left(1+3 m x^{3}-4 x^{3}\right)$

\section*{| ELASSROOM | Factoring Out a Binomial Facto |
| :--- | :--- |}

Factor out the greatest common factor.
$(a+2)(a-3)+(a+2)(a+6)$

Solution:

The GCF is the binomial $a+2$.
$=(a+2)[(a-3)+(a+6)]$
$=(a+2)(a-3+a+6)$
$=(a+2)(2 a+3)$
$(y-1)(y+3)-(y-1)(y+4)$
$=(y-1)[(y+3)-(y+4)]$
$=(y-1)(y+3-y-4)$
$=(y-1)(-1)$ or $-y+1$

EXAMPIE 3
 EXAMPLE 3

Factoring Out a Binomial Factor (cont'd)

CLASSROOM Factoring Out a Negative Common Factort EXAMPLE 4
 Factor $-6 r^{2}+5 r$ in two ways

Solution:

r could be used as the common factor giving
$=r \cdot-6 r+r \cdot 5$
$=r(-6 r+5)$

Because of the negative sign, $-r$ could also be used as the common factor.
$=-r(6 r)+(-r)(5)$
$=-r(6 r-5)$

Factoring by grouping.

Sometimes individual terms of a polynomial have a greatest common factor of 1, but it still may be possible to factor the polynomial by using a process called factoring by grouping

We usually factor by grouping when a polynomial has more than three terms.

Factor $(6 p+r p)$ as $p(6+r)$ and factor $(-6 q-r q)$ as $-q(6+r)$

$$
\begin{aligned}
& =(6 p+r p)+(-6 q-r q) \\
& =p(6+r)-q(6+r) \\
& =(6+r)(p-q)
\end{aligned}
$$

Factoring by grouping.

Factoring by Grouping

Step 1 Group terms. Collect the terms into groups so that each group has a common factor.

Step 2 Factor within groups. Factor out the common factor in each group.

Step 3 Factor the entire polynomial. If each group now has a common factor, factor it out. If not, try a different grouping.

Always check the factored form by multiplying.

	CLASSROOM EXAMPLE 7	Factoring by	
	Factor.$k n+m n-k-m$		
	Solution:		
	Group the terms:		
	$=(k n+m n)+(-k-m)$		
	$=n(k+m)+(-1)(k+m)$		
	$=(k+m)(n-1)$		
	Convighte2012.2008.2004 Pearson Education_lnc._ Slide 6.1-15		

CLASSROOM EXAMPLE 8	Rearranging Terms before Factoring by Grouping
Factor.$10 x^{2} y^{2}-18+15 y^{2}-12 x^{2}$	
Solution:	
Group the terms so that there is a common factor in the first two terms and a common factor in the last two terms.	
$=\left(10 x^{2} y^{2}+15 y^{2}\right)+\left(-12 x^{2}-18\right)$	
$=5 y^{2}\left(2 x^{2}+3\right)-6\left(2 x^{2}+3\right)$	
$=\left(2 x^{2}+3\right)\left(5 y^{2}-6\right)$	
Conviahte2012.2008.2004. P	SonEducation_Unc_ Slide 6.1-16

6.2 Factoring Trinomials

Objectives
1 Factor trinomials when the coefficient of the quadratic term is 1 .
2 Factor trinomials when the coefficient of the quadratic term is not 1.

3 Use an alternative method for factoring trinomials.
4 Factor by substitution.

Factor trinomials when the coefficient of the quadratic term is 1.

Factoring $x^{2}+b x+c$

Step 1 Find pairs whose product is \boldsymbol{c}. Find all pairs of integers whose product is c, the third term of the trinomial.

Step 2 Find pairs whose sum is b. Choose the pair whose sum is b, the coefficient of the middle term.

If there are no such integers, the polynomials cannot be factored.

A polynomial that cannot be factored with integer coefficient is a prime polynomial.

CLASSROOM EXAMPLE 1	Factoring Trinomials in $\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{b x}+\boldsymbol{c}$ Form (cont'd)
The coefficient of the middle term is 9 , so the required numbers are 5 and 4. The factored form of $a^{2}+9 a+20$ is	
	$(a+5)(a+4)$.
Check $(a+5)(a+4)=a^{2}+9 a+20$	


```
CLASSROOM Recognizing a Prime Polynomial
EXAMPLE 2
Factor t}\mp@subsup{t}{}{2}+3t-5
```


Solution:

Look for two expressions whose product is -5 and whose sum is 3 . There are no such quantities. Therefore, the trinomial cannot be factored and is prime

CLASSROOM EXAMPLE 3
Factor $p^{2}-5 p q+6 q^{2}$.

Solution

Look for two expressions whose product is $6 q^{2}$ and whose sum is $5 q$. The quantities $-3 q$ and $-2 q$ have the necessary product and sum, so

$$
p^{2}-5 p q+6 q^{2}=(p-3 q)(p-2 q)
$$

CLASSROOM	
EXAMPLE 4	Factoring a Trinomial with a Common Factor

Factor $3 a^{3}+12 a^{2}-15 a$.
Solution:
Start by factoring out the GCF, 3a

$$
=3 a\left(a^{2}+4 a-5\right)
$$

To factor $a^{2}+4 a-5$, look for two integers whose product is -5 and whose sum is 4 . The necessary integers are -1 and 5 . Remember to write the common factor $3 a$ as part of the answer.

$$
=3 a(a-1)(a+5)
$$

When factoring, always look for a common factor first. Remember to write the common factor as part of the answer.

Objective 2

Factor trinomials when the coefficient of the quadratic term is not 1.

CLASSROOM	
EXAMPLE 5	Factoring a Trinomial in $a x^{2}+b x+c$ Form

Factor $6 k^{2}-19 k+10$.
Solution:

The product as is $6(10)=60$. Look for two integers whose products is
60 and whose sum is -19 . The necessary integers are -15 and -4 . Write $-19 k$ as $-15 k-4 k$ and then factor by grouping

$$
\begin{aligned}
& =6 k^{2}-15 k-4 k+10 \\
& =\left(6 k^{2}-15 k\right)+(-4 k+10) \\
& =3 k(2 k-5)-2(2 k-5) \\
& =(2 k-5)(3 k-2)
\end{aligned}
$$

CLASSROOM
EXAMPLE 6
Factoring Trinomials in $a x^{2}+b x+c$ Form
Factor each trinomial. Alternative Method
Solution:
$10 x^{2}+17 x+3$
By trial and error, the following are factored.

$$
=(5 x+1)(2 x+3)
$$

$6 r^{2}+13 r-5$

$$
=(2 r+5)(3 r-1)
$$

Use an alternative method for factoring trinomials.

 Factoring $a x^{2}+b x+c$ (GCF of a, b, c is 1)Step 1 Find pairs whose product is a. Write all pairs of integer factors of a, the coefficient of the second-degree term.

Step 2 Find pairs whose product is c. Write all pairs of integer factors of c, the last term.

Step 3 Choose inner and outer terms. Use FOIL and various combinations of the factors from Steps 1 and 2 until the necessary middle term is found.

If no such combinations exist, the trinomial is prime.

CLASSROOM EXAMPLE 7
 Factoring a Trinomial in Two Variables

Factor $6 m^{2}+7 m n-5 n^{2}$.

Solution

Try some possibilities.

$(6 m+n)(m-5 n)$	$=6 m^{2}-29 m n-5 n^{2}$	No
$(6 m-5 n)(m+n)$	$=6 m^{2}+m n-5 n^{2}$	No
$(3 m+n)(2 m-5 n)$	$=6 m^{2}-13 m n-5 n^{2}$	No
$(3 m+5 n)(2 m-n)$	$=6 m^{2}+7 m n-5 n^{2}$	Yes

The correct factoring is

$$
=(3 m+5 n)(2 m-n)
$$

CLASSROOM
EXAMPLE 8

Factor $-2 p^{2}-5 p+12$.

Solution:

First factor out -1 , then proceed.
$=-1\left(2 p^{2}+5 p-12\right)$
$=-1(p+4)(2 p-3)$
$=-(p+4)(2 p-3)$
$\begin{aligned} & \text { CLASSROOM } \\ & \text { EXAMPLE } 9\end{aligned}$ Factoring a Trinomial with a Common Factor
Factor $4 m^{3}+2 m^{2}-$
$6 m$.
Solution:
First, factor out the GCF, $2 m$.
$=2 m\left(2 m^{2}+m-3\right)$
Look for two integers whose product is $2(-3)=-6$ and whose sum
is 1 . The integers are 3 and -2 .
$=2 m\left(2 m^{2}+3 m-2 m-3\right)$
$=2 m[m(2 m+3)-1(2 m+3)]$
$=2 m[(2 m+3)(m-1)]$
$=2 m(2 m+3)(m-1)$

CLASSROOM EXAMPLE 10
 Factor $8(z+5)^{2}-2(z+5)-3$.

Solution:
$=8 x^{2}-2 x-3 \quad$ Let $x=z+5$.
$=(2 x+1)(4 x-3)$

Now replace x with $z+5$.
$=[2(z+5)+1][4(z+5)-3]$
$=(2 z+10+1)(4 z+20-3)$
$=(2 z+11)(4 z+17)$

$$
\begin{aligned}
& \begin{array}{l}
\text { CLASSROOM } \\
\text { EXAMPLE } 11
\end{array} \\
& \begin{array}{ll}
\text { Factor } 6 r^{4}-13 r^{2}+5 . & \text { Factoring a Trinomial i } \\
\text { Solution: } & \text { Let } x=r^{2} . \\
=6\left(r^{2}\right)^{2}-13 r^{2}+5 & \text { Factor. } \\
=6 x^{2}-13 x+5 & x=r^{2} \\
=(3 x-5)(2 x-1) & \\
=\left(3 r^{2}-5\right)\left(2 r^{2}-1\right) &
\end{array}
\end{aligned}
$$

6.3 Special Factoring

Objectives
1 Factor a difference of squares.
2 Factor a perfect square trinomial.

3 Factor a difference of cubes.
4 Factor a sum of cubes.

Factor a difference of squares

Difference of Squares
$x^{2}-y^{2}=(x+y)(x-y)$

$$
\begin{aligned}
& \text { CLASSROOM } \\
& \text { EXAMPLE } 1 \\
& \text { Factor each polynomial. } \\
& p^{2}-100 \\
& \text { Solution: } \\
& =p^{2}-10^{2} \\
& =(p+10)(p-10) \\
& 2 x^{2}-18 \\
& =2\left(x^{2}-9\right) \\
& =2\left(x^{2}-3^{2}\right) \\
& =2(x+3)(x-3) \\
& 9 a^{2}-16 b^{2} \\
& =(3 a)^{2}-(4 b)^{2} \\
& =(3 a+4 b)(3 a-4 b)
\end{aligned}
$$

Objective 2

Factor a prefect square trinomial.

| CLASSROOM |
| :--- | :--- |
| EXAMPLE 2 | Factoring Perfect Square Trinomials

Factor the polynomial.
$49 z^{2}-14 z+1$

Solution:

$=(7 z)^{2}-14 z+1^{2}$
$=(7 z-1)^{2}$
Check. $2(7 z)(-1)=-14 z$, which is the middle term. Thus, $49 z^{2}-14 z+1=(7 z-1)^{2}$.

CLASSROOM	
EXAMPLE 2	Factoring Perfect Square Trinomials (cont'd)

Factor the polynomial.
$9 a^{2}+48 a b+64 b^{2}$
Solution:
$=(3 a)^{2}+48 a b+(8 b)^{2}$
$=(3 a+8 b)^{2}$

Check. $2(3 a)(8 b)=48 a b$, which is the middle term Thus, $9 a^{2}+48 a b+64 b^{2}=(3 a)^{2}+48 a b+(8 b)^{2}=(3 a+8 b)^{2}$

CLASSROOM
Factoring Perfect Square Trinomials (cont'd)
Factor the polynomial.
$x^{2}-2 x+1-y^{2}$
Solution:
$=\left(x^{2}-2 x+1\right)-y^{2} \quad$ Factor by grouping.
$=(x-1)^{2}-y^{2} \quad$ Factor the perfect square trinomial.

This is the difference of two squares.
$=[(x-1)+y][(x-1)-y]$
$=(x-1+y)(x-1-y)$

Objective 3

Factor a difference of cubes.

Factor a difference of cubes.
Difference of Cubes

$$
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)
$$

CLASSROOM

Factor the polynomial.
$x^{3}-1000$
Solution:

CLASSROOM	
EXAMPLE 3	Factoring Differences of Cubes (cont'd)

Factor each polynomial.
$8 k^{3}-y^{3}$

Solution:

$=(2 k)^{3}-y^{3}$
$=(2 k-y)\left[(2 k)^{2}+2 k(y)+y^{2}\right]$
$=(2 k-y)\left(4 k^{2}+2 k y+y^{2}\right)$
$27 m^{3}-64 n^{3}$

$$
\begin{aligned}
& =(3 m)^{3}-(4 n)^{3} \\
& =(3 m-4 n)\left[(3 m)^{2}+3 m(4 n)+(4 n)^{2}\right] \\
& =(3 m-4 n)\left(9 m^{2}+12 m n+16 n^{2}\right)
\end{aligned}
$$

Objective 4

Factor a sum of cubes.

Slide 6.3-14

Factor a sum of cubes.

Sum of Cubes
$x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

The sign of the second term in the binomial factor of a sum or difference of
cubes is always the same as the sign in the original polynomial. In the trinomia
factor, the first and last terms are always positive. The sign of the middle term
is the opposite of the sign of the second term in the binomial factor

$$
\begin{aligned}
& \text { CLASSROOM Factoring Sums of Cubes } \\
& \text { EXAMPLE } 4 \\
& \text { Factor each polynomial } \\
& 8 p^{3}+125 \\
& \text { Solution: } \\
& =(2 p)^{3}+5^{3} \\
& =(2 p+5)\left[(2 p)^{2}-(2 p)(5)+5^{2}\right] \\
& =(2 p+5)\left(4 p^{2}-10 p+25\right) \\
& 64 m^{3}+125 n^{3} \\
& =(4 m)^{3}+(5 n)^{3} \\
& =(4 m+5 n)\left[(4 m)^{2}-4 m(5 n)+(5 n)^{2}\right] \\
& =(4 m+5 n)\left(16 m^{2}-20 m n+25 n^{2}\right)
\end{aligned}
$$

CLASSROOM

Factoring Sums of Cubes (cont'd)
EXAMPLE 4
Factor each polynomial.
$2 x^{3}+2000$

Solution:

$=2\left(x^{3}+1000\right)$
$=2\left(x^{3}+10^{3}\right)$
$=2(x+10)\left(x^{2}-10 x+10^{2}\right)$
$=2(x+10)\left(x^{2}-10 x+100\right)$
$(a-4)^{3}+b^{3}$

$$
\begin{aligned}
& =[(a-4)+b]\left[(a-4)^{2}-(a-4) b+b^{2}\right. \\
& =(a-4+b)\left(a^{2}-8 a+16-a b+4 b+b^{2}\right)
\end{aligned}
$$

6.4) A General Approach to Factoring

Objectives
1 Factor out any common factor.
2 Factor binomials.
3 Factor trinomials.
4 Factor polynomials of more than three terms.

A General Approach to Factoring
 Factoring a Polynomial

Step 1 Factor out any common factor.

Step 2 If the polynomial is a binomial, check to see if it is the difference of squares, a difference of cubes, or a sum of cubes.

If the polynomial is a trinomial, check to see if it is a perfect square trinomial. If it is not, factor as in Section 6.2.

If the polynomial has more than three terms, try to factor by grouping.

Step 3 Check the factored form by multiplying.

Objective 2

$$
\text { EXAMPLE } 1
$$

ELASSROOM
Factoring Out a Common Factor
Factor each polynomial.
$2 x^{3}+10 x^{2}-4 x$
Solution:

The GCF is $2 x$.
$=2 x\left(x^{2}+5 x-2\right)$
$12 m(p-q)-7 n(p-q)$
The GCF is $(p-q)$
$=(p-q)(12 m-7 n)$

Factor binomials.

Factoring a Binomial

For a binomial (two terms), check for the following:

Difference of Squares:

$$
x^{2}-y^{2}=(x-y)(x+y)
$$

Difference of Cubes:

$$
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)
$$

Sum of Cubes:
$x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

CLASSROOM
EXAMPLE 2
Factoring Binomials
Factor each binomial, if possible.
$36 x^{2}-y^{2}$
Solution:
Difference of squares
$=(6 x)^{2}-(y)^{2}$
$=(6 x-y)(6 x+y)$
$4 t^{2}+1$

The binomial is prime. It is the sum of squares.
$125 x^{3}-27 y^{3}=$
$=(5 x-3 y)\left[(5 x)^{2}+(5 x)(3 y)+(3 y)^{2}\right]$
$=(5 x-3 y)\left(25 x^{2}+15 x y+9 y^{2}\right)$

Factor trinomials.

Factoring a Trinomial
For a trinomial (three terms), decide whether it is a perfect square trinomial of either of these forms $x^{2}+2 x y+y^{2}=(x+y)^{2}$ $x^{2}-2 x y+y^{2}=(x-y)^{2}$ or \quad If not, use the methods of Section 6.2.

CLASSROOM EXAMPLE 3
 Factoring Trinomials

Factor each trinomial
$16 m^{2}+56 m+49$
Solution:
$=(4 m+7)^{2} \quad$ Perfect square trinomial
$8 t^{2}-13 t+5$

Two integer factors whose sum is $8(5)=40$ and whose sum
is -13 are -5 and -8
$=8 t^{2}-5 t-8 t+5$
$=t(8 t-5)-1(8 t-5)$
$=(8 t-5)(t-1)$

CLASSROOM
EXAMPLE 3

Factor the trinomial.

$6 x^{2}-3 x-63$
Solution:
Factor out the GCF of 3 .
$=3\left(2 x^{2}-x-21\right)$
\quadTwo factors whose product is $2(-21)=-42$ and whose sum is -1 are -7 and 6. $=3\left[2 x^{2}-7 x+6 x-21\right]$ $=3[x(2 x-7)+3(2 x-7)]$ $=3(2 x-7)(x+3)$

Objective 3

Factor polynomials of more than three terms.

```
CLASSROOM 
Factor each polynomial.
p
    Solution:
    =( (p}-2p\mp@subsup{q}{}{2})+(\mp@subsup{p}{}{2}q-2\mp@subsup{q}{}{3}
    =p(\mp@subsup{p}{}{2}-2\mp@subsup{q}{}{2})+q(\mp@subsup{p}{}{2}-2\mp@subsup{q}{}{2})
    = (p}\mp@subsup{p}{}{2}-2\mp@subsup{q}{}{2})(p+q
9x}\mp@subsup{}{2}{+}+24x+16-\mp@subsup{y}{}{2
    =(9\mp@subsup{x}{}{2}+24x+16)-\mp@subsup{y}{}{2}
    = (3x+4)2}-\mp@subsup{y}{}{2
    = [(3x+4)+y)][(3x+4)-y)]
    =(3x+4+y)(3x+4-y)

\subsection*{6.5 Solving Equations by Factoring}

Objectives
1 Learn and use the zero-factor property.
2 Solve applied problems that require the zero-factor property.
3 Solve a formula for a specified variable, where factoring is necessary.
Solve \((8 x+3)(2 x+1)=0\).
Solution:
By the zero-factor property, either
\[
\begin{aligned}
& 8 x+3=0 \text { or } 2 x+1=0 \\
& 8 x+3=0 \quad \text { or } \quad 2 x+1=0 \\
& 8 x=-3 \quad \text { or } \quad 2 x=-1 \\
& x=-\frac{3}{8} \quad \text { or } \quad x=-\frac{1}{2}
\end{aligned}
\]

Check the two solutions by substitution into the original equation.

\section*{Learn and use the zero-factor property.}

CLASSROOM EXAMPLE 1

\section*{Zero-Factor Property}

If two numbers have a product of 0 , then at least one of the numbers must be 0 .

That is, if \(a b=0\), then either \(a=0\) or \(b=0\).
\((8 x+3)(2 x+1)=0\).
\[
\begin{array}{r|r}
\left((8)\left(-\frac{3}{8}\right)+3\right)\left((2)\left(-\frac{3}{8}\right)+1\right)=0 & \left((8)\left(-\frac{1}{2}\right)+3\right)\left((2)\left(-\frac{1}{2}\right)+1\right)=0 \\
(-3+3)\left(-\frac{6}{8}+\frac{8}{8}\right)=0 & (-4+3)(0)=0 \\
0=0 & 0=0 \\
\text { True } & \text { True }
\end{array}
\]

Both solutions check; the solution set is \(\left\{-\frac{3}{8},-\frac{1}{2}\right\}\).
```

Learn and use the zero-factor property.

```

\section*{Quadratic Equation}
```

An equation that can be written in the form

$$
a x^{2}+b x+c=0
$$

Learn and use the zero-factor property.
 Solving a Quadratic Equation by Factoring

Step 1 Write in standard form. Rewrite the equation if necessary so that one side is 0 .

Step 2 Factor the polynomial.
Step 3 Use the zero-factor property. Set each variable factor equal to 0 .

Step 4 Find the solution(s). Solve each equation formed in Step 3.
Step 5 Check each solution in the original equation.

CLASSROOM	
EXAMPLE 2	Solving Quadratic Equations by Factoring (cont'd)

Solve the equation.
$16 m^{2}+24 m+9=0$
Solution:
Step 1 Standard form. Already in standard form.
Step 2 Factor. $\quad(4 m+3)^{2}=0$
Step 3 Zero-factor. $\quad 4 m+3=0$
Step 4 Solve.

$$
4 m=-3
$$

$$
m=\frac{-3}{4}
$$

Step 5 Check. $16\left(\frac{-3}{4}\right)^{2}+24\left(\frac{-3}{4}\right)+9=0$

$$
9-18+9=0
$$

The solution set is $\left\{-\frac{3}{4}\right\}$.
$0=0 \quad$ True

CLASSROOM
EXAMPLE 5
Solving an Equation That Requires Rewriting
EXAMPLE 5
Solve $(x+6)(x-2)=2+x-10$.

Solution:

$$
\left.\left.\begin{array}{rlrl}
x^{2}+4 x-12 & =x-8 & & \text { Multiply. } \\
x^{2}+3 x-4 & =0 & & \text { Standard form. } \\
(x-1)(x+4) & =0 & & \text { Factor. } \\
x-1 & =0 & \text { or } & x+4
\end{array}\right)=0 \begin{array}{rlrl}
x & =1 & \text { or } & x
\end{array}\right)
$$

Check that the solution set is $\{-4,1\}$.

$$
\begin{aligned}
& \begin{array}{c|c}
\text { CLASSROOM } \\
\text { EXAMPLE } 6 & \text { Solving an Equation of Degree } 3
\end{array} \\
& \text { Solve } 3 x^{3}+x^{2}=4 x \\
& 3 x^{3}+x^{2}-4 x=0 \quad \text { Standard form. } \\
& x\left(3 x^{2}+x-4\right)=0 \quad \text { Factor out } \boldsymbol{n} . \\
& x(3 x+4)(x-1)=0 \\
& x=0 \quad \text { or } \quad 3 x+4=0 \quad \text { or } \quad \begin{array}{rlrl}
x-1 & =0 \\
x & =-\frac{4}{3} & & x
\end{array} \\
& \text { Check that the solution set is }\left\{-\frac{4}{3}, 0,1\right\} \text {. }
\end{aligned}
$$

CLASSROOM	
EXAMPLE 7	Using a Quadratic Equation in an Application

The length of a room is 2 m less than three times the width. The area of the room is $96 \mathrm{~m}^{2}$. Find the width of the room.

Solution:

Step 1 Read the problem again. There will be one answer.

Step 2 Assign a variable.

Let $x=$ the width of the room.
Let $3 x-2=$ the length of the room.
The area is 96 .

CLASSROOM	
EXAMPLE 7	Using a Quadratic Equation in an Application (cont'd)

Step 3 Write an equation. The area of a rectangle is the length times the width.
$A=l w$
$96=(3 x-2) x$
Step 4 Solve.

$$
\begin{aligned}
96 & =(3 x-2) x \\
96 & =3 x^{2}-2 x \\
0 & =3 x^{2}-2 x-96 \\
0 & =(3 x+16)(x-6)
\end{aligned}
$$

$$
\left.\begin{array}{rlrr}
3 x+16 & =0 & \text { or } & x-6=0 \\
x & x=6
\end{array} \quad x \begin{array}{|c}
\\
x
\end{array}\right)
$$

Step 6 Check.

 $3(6)-2=16$.
CLASSROOM EXAMPLE 7 Using a Quadratic Equation in an Application (cont'd)

Step 5 State the answer.
A distance cannot be negative, so reject $-\frac{16}{3}$ as a solution.
The only possible solution is 6 , so the width of the room is 6 m .

The length is 2 m less than three times the width, the length would be
solution of the equation quar not satisfy the
physical requirements of the problem. Reject
such solutions as valid answers.
\square

Objective 3

Solve a formula for a specified variable, where factoring is necessary.

```
It will reach a height of 256 feet in 4 seconds.
    CLASSROOM Using a Quadratic Function in an Application
    EXAMPLE }
If a small rocket is launched vertically upward from ground level with
an initial velocity of }128\textrm{ft}\mathrm{ per sec, then its height in feet after t
seconds is a function defined by h(t)=-16t2 + 128t if air resistance is
neglected. How long will it take the rocket to reach a height of }25
negle
Solution:
We let }h(t)=256\mathrm{ and solve for }
                    256=-16t2}+128
            16t ' - 128t+256=0 Divide by 16.
            t}\mp@subsup{t}{}{2}-8t+16=
            (t-4)}\mp@subsup{)}{}{2}=
            t-4=0
                4}=
```

$A=2 H W+2 L W+2 L H$

$$
\begin{aligned}
& \text { Solution: } \\
& A-2 L H=2 H W+2 L W \\
& A-2 L H=W(2 H+2 L) \\
& \frac{A-2 L H}{2 H+2 L}=W \quad \text { or } \quad \mathrm{W}=\frac{A-2 L H}{2 H+2 L}
\end{aligned}
$$

