

Define rational functions and describe their domains. A function that is defined by a quotient of polynomials is called a rational function and has the form $f(x) = \frac{P(x)}{Q(x)}, \text{ where } Q(x) \neq 0.$ The domain of the rational function consists of all real numbers except those that make Q(x)—that is, the denominator—equal to 0. For example, the domain of $f(x) = \frac{2}{\frac{x-5}{Cannot equal 0}}$ includes all real numbers except 5, because 5 would make the denominator equal to 0.

Slide 7.

CLASSROOM EXAMPLE 4	Multiplying Rat	ional Expressions	
Multiply.			
$\frac{c^2 + 2c}{c^2 - 4} \cdot \frac{c^2 - 4c + 4}{c^2 - c}$		$\frac{m^2-16}{m+2} \cdot \frac{1}{m+4}$	
Solution:			
$=\frac{c(c+2)}{(c-2)(c+2)}\cdot$	$\frac{(c-2)(c-2)}{c(c-1)}$	$=\frac{(m-4)(m+4)}{m+2}\cdot\frac{1}{2}$	$\frac{1}{m+4}$
$=\frac{(c-2)}{(c-1)}$		$=\frac{m-4}{m+2}$	
Convright © 2012, 2008, 2004 Pea	urson Education. Inc.		Slide 7.1- 11

Divide rational expressions. Dividing Rational Expressions To divide two rational expressions, *multiply* the first (the *dividend*) by the reciprocal of the second (the *divisor*). State 7.1-14

CLASSROOM DE LA	
EXAMPLE 5	ing Rational Expressions
Divide.	
$\frac{5p+2}{2}$ \div $\frac{15p+6}{2}$	$\frac{q^2+2q}{\dot{q}}$ $\div \frac{4-q^2}{\dot{q}}$
6 5	5+q = 3q-6
Solution:	
$=\frac{5p+2}{6}\cdot\frac{5}{15p+6}$	$= \frac{q^2 + 2q}{5 + q} \cdot \frac{3q - 6}{4 - q^2}$
$=\frac{5p+2}{6}\cdot\frac{5}{3(5p+2)}$	$= \frac{q(q+2)}{5+q} \cdot \frac{3(q-2)}{(2-q)(2+q)}$
$=\frac{5}{18}$	$=\frac{q(q+2)3(q-2)}{(-1)(5+q)(q-2)(q+2)}$
	$=-\frac{3q}{5+q}$
Convright © 2012, 2008, 2004, Pearson Educatio	n Inc