7.1) Rational Expressions and Functions; Multiplying and Dividing

Objectives
1 Define rational expressions.
2 Define rational functions and describe their domains.

3 Write rational expressions in lowest terms.
4 Multiply rational expressions.

5 Find reciprocals of rational expressions.
6 Divide rational expressions.

Define rational expressions.

A rational expression or algebraic fraction, is the quotient of two polynomials, again with the denominator not 0 .

For example:

$$
\frac{x}{y}, \frac{-a}{4}, \frac{m+4}{m+2}, \quad \frac{8 x^{2}-2 x+5}{4 x^{2}+5 x}, \quad x^{5}\left(\text { or } \frac{x^{5}}{1}\right)
$$

are all rational expressions. Rational expressions are elements of the set

$$
\left\{\left.\frac{P}{Q} \right\rvert\, P \text { and } Q \text { are polynomials, with } Q \neq 0\right\} \text {. }
$$

Define rational functions and describe their domains.

A function that is defined by a quotient of polynomials is called a rational function and has the form

$$
f(x)=\frac{P(x)}{Q(x)}, \text { where } Q(x) \neq 0
$$

The domain of the rational function consists of all real numbers except those that make $Q(x)$-that is, the denominator-equal to 0 .

For example, the domain of

$$
f(x)=\frac{2}{\underbrace{x-5}_{\text {Cannot equal } 0}}
$$

includes all real numbers except 5 , because 5 would make the denominator equal to 0 .

CLASSROOM
 EXAMPLE 1
 Finding Domains of Rational Functions

For each rational function, find all numbers that are not in the domain. Then give the domain in set-builder notation

$$
f(x)=\frac{x+6}{x^{2}-x-6} \quad f(x)=\frac{3+2 x}{5}
$$

Solution:

$$
\begin{array}{cl}
x^{2}-x-6=0 & \begin{array}{l}
\text { The denominator } 5 \text { cannot ever } \\
\text { be } 0, \text { so the domain includes } \\
\text { all real numbers. }(-\infty, \infty)
\end{array} \\
(x+2)(x-3)=0 & \\
x+2=0 \text { or } x-3=0 & \\
x=-2 \text { or } \quad x=3 \\
\{x \mid x \neq-2,3\} &
\end{array}
$$

Write rational expressions in lowest terms.

Fundamental Property of Rational Numbers

If $\frac{a}{b}$ is a rational number and if c is any nonzero real number, then

$$
\frac{a}{b}=\frac{a c}{b c} .
$$

That is, the numerator and denominator of a rational number may either be multiplied or divided by the same nonzero number without changing the value of the rational number expressions.

Be careful! When using the fundamental property of rational numbers, only common factors may be divided. Remember to factor before writing a fraction in lowest terms.

Write rational expressions in lowest terms.

Writing a Rational Expression in Lowest Terms

Step 1 Factor both the numerator and denominator to find their greatest common factor (GCF).

Step 2 Apply the fundamental property. Divide out common factors.

$$
\begin{aligned}
& \text { Write each rational expression in lowest terms. } \\
& \frac{y^{2}+2 y-3}{y^{2}-3 y+2} \\
& \frac{y+2}{y^{2}+4} \\
& \frac{1+p^{3}}{1+p} \\
& \text { Solution: }
\end{aligned}
$$

CLASSROOM EXAMPLE 3

Writing Rational Expressions in Lowest Terms
Write each rational expression in lowest terms
$\frac{r-1}{1-r}$

$$
\frac{p-2}{4-p^{2}}
$$

Solution:
$\frac{r-1}{1-r}=\frac{r-1}{-1(r-1)}$
$=\frac{p-2}{-1\left(p^{2}-4\right)}$
$=\frac{1}{-1}=-1$
$=\frac{p-2}{-1(p-2)(p+2)}$

$$
=\frac{1}{-1(p+2)}=\frac{-1}{p+2}
$$

Write rational expressions in lowest terms.

Quotient of Opposites

In general, if the numerator and the denominator of a rational expression are opposites, then the expression equals -1 .

$$
\frac{r-2}{r+2} \longleftarrow \quad \begin{aligned}
& \text { Numerator and denominator } \\
& \text { are not opposites. }
\end{aligned}
$$

Multiply rational expressions.

Multiplying Rational Expressions

Step 1 Factor all numerators and denominators as completely as possible.

Step 2 Apply the fundamental property.
Step 3 Multiply the numerators and multiply the denominators.
Step 4 Check to be sure that the product is in lowest terms.

$$
\begin{aligned}
& \text { CLASSROOM } \\
& \text { EXAMPLE } 4
\end{aligned} \text { Multiplying Rational Expressions } \quad \text { Multiply. } \begin{array}{ll}
\frac{c^{2}+2 c}{c^{2}-4} \cdot \frac{c^{2}-4 c+4}{c^{2}-c} & \frac{m^{2}-16}{m+2} \cdot \frac{1}{m+4}
\end{array}
$$

Objective 5
Find reciprocals of rational expressions.

Find reciprocals of rational expressions.

Finding the Reciproca

To find the reciprocal of a nonzero rational expression, invert the rational expression

Two rational expressions are reciprocals of each other if they have a product of 1. Recall that 0 has no reciprocal.

Divide rational expressions.

Dividing Rational Expressions

To divide two rational expressions, multiply the first (the dividend) by the reciprocal of the second (the divisor).

$$
\begin{array}{ll}
\begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 5
\end{array} & \text { Dividing Rational Expressions } \\
\begin{array}{ll}
\text { Divide. } \\
\frac{5 p+2}{6} \div \frac{15 p+6}{5} & \frac{q^{2}+2 q}{5+q} \div \frac{4-q^{2}}{3 q-6} \\
\text { Solution: }
\end{array} \\
=\frac{5 p+2}{6} \cdot \frac{5}{15 p+6} & =\frac{q^{2}+2 q}{5+q} \cdot \frac{3 q-6}{4-q^{2}} \\
=\frac{5 p+2}{6} \cdot \frac{5}{3(5 p+2)} & =\frac{q(q+2)}{5+q} \cdot \frac{3(q-2)}{(2-q)(2+q)} \\
=\frac{5}{18} & =\frac{q(q+2) 3(q-2)}{(-1)(5+q)(q-2)(q+2)} \\
& =-\frac{3 q}{5+q}
\end{array}
$$

