7.2 Adding and Subtracting Rational Expressions

Objectives
1 Add and subtract rational expressions with the same denominator.
2 Find a least common denominator.

3 Add and subtract rational expressions with different denominators.

Objective 1

Add and subtract rational expressions with the same denominator.

Add and subtract rational expressions with the same denominator.

Adding or Subtracting Rational Expressions
Step 1 If the denominators are the same, add or subtract the numerators. Place the result over the common denominator.

If the denominators are different, first find the least common denominator. Write all rational expressions with this least common denominator, and then add or subtract the numerators. Place the result over the common denominator.

Step 2 Simplify. Write all answers in lowest terms.

Objective 2

Find a least common denominator.

CLASSROOM EXAMPLE 2		Finding Least Common Denominators		
Find the LCD for each group of denominators.				
$10 a^{3} b^{5}, 15 a^{2} b^{6}$				
Solution:				
Factor.	$10 a^{3} b^{5}$		$=2 \cdot 5 \cdot a^{3} \cdot b^{5}$	
	$15 a^{2} b^{6}$		$=3 \cdot 5 \cdot a^{2} \cdot b^{6}$	
LCD	$=2 \cdot 3 \cdot 5 \cdot a^{3} \cdot b^{6}$		$=30 a^{3} b^{6}$	
$z, z+6$				
Each denominator is already factored.				
LCD $=z(z+6)$				

Objective 3

Add and subtract rational expressions with different denominators.

CLASSROOM

EXAMPLE 3
Adding and Subtracting Rational Expressions (Different Denominators)
Add or subtract as indicated.
Solution:
$\frac{6}{m}+\frac{1}{4 m}=\frac{6 \cdot 4}{m \cdot 4}+\frac{1}{4 m}=\frac{24}{4 m}+\frac{1}{4 m}=\frac{24+1}{4 m} \quad=\frac{25}{4 m}$
$\frac{2}{y}-\frac{1}{y+4}=\frac{2(y+4)}{y(y+4)}-\frac{(1) y}{(y+4) y}=\frac{2(y+4)}{y(y+4)}-\frac{y}{y(y+4)}$

$$
=\frac{2 y+8-y}{y(y+4)}=\frac{y+8}{y(y+4)}
$$

$$
\begin{aligned}
& \begin{array}{c|c}
\text { CLASSROOM } \\
\text { EXAMPLE } 4 & \text { Subtracting Rational Expressions (cont'd) }
\end{array} \\
& \text { Subtract. } \\
& \frac{2}{r-2}-\frac{r+3}{r-1} \\
& \text { Solution: } \\
& \text { The LCD is }(r-2)(r-1) \text {. } \\
& =\frac{2(r-1)}{(r-2)(r-1)}-\frac{(r+3)(r-2)}{(r-1)(r-2)}=\frac{2 r-2-\left(r^{2}+r-6\right)}{(r-2)(r-1)} \\
& =\frac{2 r-2-r^{2}-r+6}{(r-2)(r-1)} \quad=\frac{-r^{2}+r+4}{(r-2)(r-1)}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { CLASSROOM } \\
\text { EXAMPLE } 5
\end{array} \\
& \text { Add. Adding and Subtracting Rational Expressions (Denominators Are Opposites) } \\
& \frac{2}{x-3}+\frac{1}{3-x}
\end{aligned}
$$

Solution:
To get a common denominator of $x-3$, multiply both the numerator and denominator of the second expression by -1 .
$=\frac{2}{x-3}+\frac{1(-1)}{(3-x)(-1)}=\frac{2}{x-3}+\frac{-1}{x-3}=\frac{2+(-1)}{x-3}=\frac{1}{x-3}$

$$
\frac{4}{x-5}+\frac{-2}{x}-\frac{10}{x^{2}-5 x}
$$

$$
\text { Solution: }=\frac{4}{x-5}+\frac{-2}{x}-\frac{10}{x(x-5)}
$$

$$
=\frac{4 x}{(x-5) x}+\frac{-2(x-5)}{x(x-5)}-\frac{10}{x(x-5)}
$$

$$
=\frac{4 x+(-2)(x-5)-10}{x(x-5)}
$$

$$
=\frac{4 x+-2 x+10-10}{x(x-5)}=\frac{2 x}{x(x-5)}=\frac{2}{x-5}
$$

CLASSROOM

CLASSROOM EXAMPLE 8

Add.
$\frac{4}{p^{2}-6 p+9}+\frac{1}{p^{2}+2 p-15}$
Solution: $=\frac{4}{(p-3)(p-3)}+\frac{1}{(p+5)(p-3)}$
LCD is $(p-3)^{2}(p+5)$.

$$
=\frac{4(p+5)}{(p-3)^{2}(p+5)}+\frac{1(p-3)}{(p+5)(p-3)^{2}}
$$

$$
\begin{aligned}
& \begin{array}{c|c}
\text { CLASSROOM } \\
\text { EXAMPLE } 7 & \text { Subtracting Rational Expressions }
\end{array} \\
& \text { EXAMPLE } 7 \\
& \text { Subtract. } \\
& \frac{-a}{a^{2}+3 a-4}-\frac{4 a}{a^{2}+7 a+12} \\
& \text { Solution: }=\frac{-a}{(a+4)(a-1)}-\frac{4 a}{(a+4)(a+3)} \\
& \operatorname{LCD} \text { is }(a+4)(a-1)(a+3) . \\
& =\frac{-a(a+3)}{(a+4)(a-1)(a+3)}-\frac{4 a(a-1)}{(a+4)(a-1)(a+3)}
\end{aligned}
$$

