7.4 Equations with Rational Expressions and Graphs

Objectives
1 Determine the domain of the variable in a rational equation.
2 Solve rational equations.
3 Recognize the graph of a rational function.

Determine the domain of the variable in a rational equation.
A rational equation is an equation that contains at least one rational expression with a variable in the denominator.

The domain of the variable in a rational equation is the intersection of the domains of the rational expressions in the equation.

CLASSROOM

Objective 2

Solve rational equations.

Solve rational expressions.

To solve rational equations, we multiply all terms in the equation by the LCD to clear the fractions. We can do this only with equations, not expressions.

Solving an Equation with Rational Expressions

Step 1 Determine the domain of the variable.
Step 2 Multiply each side of the equation by the LCD to clear the fractions.

Step 3 Solve the resulting equation.
Step 4 Check that each proposed solution is in the domain, and discard any values that are not. Check the remaining proposed solution(s) in the original equation.

CLASSROOM
Solving a Rational Equation
EXAMPLE 2
Solve.
$-\frac{3}{20}+\frac{2}{x}=\frac{5}{4 x}$
The domain, excludes 0
Solution:

$$
\begin{aligned}
20 x\left(-\frac{3}{20}+\frac{2}{x}\right) & =20 x\left(\frac{5}{4 x}\right) \text { Multiply by the LCD, } 20 x . \\
20 x\left(-\frac{3}{20}\right)+20 x\left(\frac{2}{x}\right) & =20 x\left(\frac{5}{4 x}\right) \\
-3 x+40 & =25 \\
-3 x & =-15 \\
x & =5 \quad \text { Proposed solution }
\end{aligned}
$$

CLASSROOM Solving a Rational Equation (cont'd)

Check.

$$
\begin{aligned}
-\frac{3}{20}+\frac{2}{x} & =\frac{5}{4 x} \\
-\frac{3}{20}+\frac{2}{5} & =\frac{5}{4(5)} \\
-\frac{3}{20}+\frac{2}{5} & =\frac{5}{20} \\
-\frac{3}{20}+\frac{8}{20} & =\frac{5}{20} \\
\frac{5}{20} & =\frac{5}{20} \quad \text { The solution set is }\{5\} .
\end{aligned}
$$

When each side of an equation is multiplied by a variable expression, the resulting "solutions" may not satisfy the original equation. You must either the original equation. It is wise to do both.

$\begin{array}{c}\text { CLASSROOM } \\ \text { EXAMPLE } 3\end{array}$	Solving a Rational Equation with No Solution

Solve.
$\frac{3}{x+1}=\frac{1}{x-1}-\frac{2}{x^{2}-1}$

Solution:

The domain, excludes ± 1. The LCD is $(x+1)(x-1)$.

$$
(x+1)(x-1)\left(\frac{3}{x+1}\right)=(x+1)(x-1)\left(\frac{1}{x-1}-\frac{2}{x^{2}-1}\right)
$$

$$
3(x-1)=x+1-2
$$

$$
3 x-3=x-1
$$

$$
2 x=2
$$

$x=1 \quad$ Proposed solution

CLASSROOM

Solving a Rational Equation with No Solution (cont'd)
Since the proposed solution is not in the domain, it cannot be an actual solution of the equation. Substituting 1 into the original equation shows why

$$
\begin{aligned}
\frac{3}{x+1} & =\frac{1}{x-1}-\frac{2}{x^{2}-1} \\
\frac{3}{1+1} & =\frac{1}{1-1}-\frac{2}{1^{2}-1} \\
\frac{3}{2} & =\frac{1}{0}-\frac{2}{0}
\end{aligned}
$$

Division by 0 is undefined. The equation has no solution and the solution set is \varnothing.

\section*{| CLASSROOM | |
| :--- | :--- |
| EXAMPLE 4 | Solving a Rational Equation | EXAMPLE 4
 Solve.
 $\frac{4}{x^{2}+x-6}-\frac{1}{x^{2}-4}=\frac{2}{x^{2}+5 x+6}$}

Solution:
Factor each denominator
$x^{2}+x-6=(x+3)(x-2)$, so $x \neq-3,2$.
$x^{2}-4=(x+2)(x-2)$, so $x \neq \pm 2$.
$x^{2}+5 x+6=(x+3)(x+2)$, so $x \neq-3,-2$.
The domain is $\{x \mid x \neq-3, \pm 2\}$.
The LCD $=(x+3)(x+2)(x-2)$.

CLASSROOM
Solving a Rational Equation (cont'd)
$(x+3)(x+2)(x-2)\left[\frac{4}{x^{2}+x-6}-\frac{1}{x^{2}-4}\right]=(x+3)(x+2)(x-2) \frac{2}{x^{2}+5 x+6}$
$4(x+2)-(x+3)=2(x-2)$
$4 x+8-x-3=2 x-4$
$3 x+5=2 x-4$
$x=-9 _$Proposed solution

The solution checks in the original equation. The solution set is $\{-9\}$.

CLASSROOM
EXAMPLE 5
EXAMPLE 5
Solve.
$\frac{2}{x+3}-\frac{1}{x-1}=\frac{-x^{2}-3 x}{x^{2}+2 x-3}$
Solution:
Factor each denominator to find the LCD.
$x+3=0$, so $x \neq-3$.
$x-1=0$, so $x \neq 1$.
$x^{2}+2 x-3=(x+3)(x-1)$, so $x \neq-3,1$.
The domain is $\{x \mid x \neq-3,1\}$.
The LCD $=(x+3)(x-1)$.

CLASSROOM	Solving a Rational Equation (cont'd)		
$(x+3)(x-1)\left(\frac{2}{x+3}-\frac{1}{x-1}\right)=(x+3)(x-1)\left(\frac{-x^{2}-3 x}{x^{2}+2 x-3}\right)$			
$2(x-1)-1(x+3)=-x^{2}-3 x$			
$2 x-2-x-3=-x^{2}-3 x$			
$x-5=-x^{2}-3 x$			
$x^{2}+4 x-5=0$			
$(x+5)(x-1)=0$			
$x+5=0$ or $x-1=0$			
$x=-5$ or $x=1$			

Objective 3

Recognize the graph of a rational function.

Recognize the graph of a rational function.

A function defined by a quotient of polynomials is a rational function. Because one or more values of x may be excluded from the domain of a rational function, their graphs are often discontinuous. That is, there will be one or more breaks in the graph.

One simple rational function, defined by $f(x)=\frac{1}{x}$ and graphed on the next slide, is the reciprocal function. The domain of this function includes all real numbers except 0 . Thus, this function pairs every real number except 0 with its reciprocal.

Since the domain of this function includes all real numbers except 0 , there is no point on the graph with $x=0$. The vertical line with equation $x=0$ is called a vertical asymptote of the graph. Also, the horizontal line with equation $y=0$ is called a horizontal asymptote.

Recognize the graph of a rational function.

The closer negative values of x are to 0 ,
the smaller ("more negative") y is.

In general, if the y-values of a rational function approach ∞ or $-\infty$ as the x-values approach a real number a, the vertical line $x=a$ is a vertical asymptote of the graph. Also, if the x-values approach a real number b as $|x|$ increases without bound, the horizontal line $y=b$ is a horizontal asymptote of the graph.

CLASSROOM
EXAMPLE 6
Graphing a Rational Function
Graph, and give the equations of the vertical and horizontal asymptotes.
$f(x)=\frac{2}{x+3}$
Solution:

The vertical asymptote: $x=-3$
The horizontal asymptote: $y=0$

