7.5 Applications of Rational Expressions

Objectives
1 Find the value of an unknown variable in a formula.
2 Solve a formula for a specified variable.

3 Solve applications by using proportions.
4 Solve applications about distance, rate, and time.
5 Solve applications about work rates.

Objective 1

Find the value of an unknown variable in a formula.

$$
\begin{aligned}
& \begin{array}{l}
\text { CLASSROOM } \\
\text { EXAMPLE } 1
\end{array} \\
& \text { Finding the Value of a Variable in a Formula } \\
& \text { Use the formula } \frac{1}{f}=\frac{1}{p}+\frac{1}{q} \text { to find } p \text { if } f=15 \mathrm{~cm} \text { and } q=25 \mathrm{~cm} .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{p}+\frac{1}{q} \\
& \frac{1}{15}=\frac{1}{p}+\frac{1}{25} \quad \text { Let } f=\mathbf{1 5} \text { and } \boldsymbol{q}=\mathbf{2 5} \text {. } \\
& 75 p \cdot \frac{1}{15}=75 p\left(\frac{1}{p}+\frac{1}{25}\right) \text { Multiply by the LCD, } 75 p \text {. } \\
& 5 p=75+3 p \\
& 2 p=75 \\
& p=\frac{75}{2}
\end{aligned}
$$

Objective 2

Solve a formula for a specified variable.

$$
\begin{aligned}
& \begin{array}{ll}
\text { CLASSROOM } \\
\text { EXAMPLE } 2 & \text { Finding a Formula for a Specified Variable }
\end{array} \\
& \text { EXAMPLE } 2 \\
& \text { Solve } \frac{3}{p}+\frac{3}{q}=\frac{5}{r} \text { for } q \text {. } \\
& \text { Solution: } \\
& p q r\left(\frac{3}{p}+\frac{3}{q}\right)=p q r \cdot \frac{5}{r} \quad \quad \text { Multiply by the LCD, } p q r \text {. } \\
& 3 q r+3 p r=5 p q \\
& \text { Distributive property. } \\
& 3 p r=5 p q-3 q r \\
& \text { Subtract } 3 q r \text { to get all } q \text { terms } \\
& \text { on same side of equation. } \\
& 3 p r=q(5 p-3 r) \\
& \text { Factor out } q \text {. } \\
& \frac{3 p r}{5 p-3 r}=q \quad \text { or } \quad q=\frac{3 p r}{5 p-3 r} \text { Divide. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CLASSROOM } \\
& \text { EXAMPLE } 3 \\
& \text { Solve } A=\frac{R r}{R+r} \text { for } R \text {. } \\
& \text { Solution: } \\
& (R+r) A=(R+r)\left(\frac{R r}{R+r}\right) \\
& A(R+r)=R r \\
& A R+A r=R r \\
& A R-R r=-A r \\
& R(A-r)=-A r \\
& R=\frac{-A r}{A-r} \text { or } \frac{A r}{r-A}
\end{aligned}
$$

Solve applications by using proportions.

A ratio is a comparison of two quantities. The ratio of a to b may be written in any of the following ways:

$$
\begin{array}{ccc}
\text { a to } b, & \text { a:b, or } & \frac{a}{b} \text {. } \\
& \text { Ratio of } \boldsymbol{a} \text { to } \boldsymbol{b}
\end{array}
$$

Ratios are usually written as quotients in algebra. A proportion is a statement that two ratios are equal, such as

$$
\frac{a}{b}=\frac{c}{d}
$$

Proportion

\section*{| CLASSROOM | Solving a Proportion |
| :--- | :--- |
| EXAMPLE 4 | |}

In 2008, approximately 9.9% (that is, 9.9 of every 100) of the $74,510,000$ children under 18 yr of age in the United States had no health insurance. How many such children were uninsured?
(Source: U.S. Census Bureau.)
Solution:
Step 1 Read the problem
Step 2 Assign a variable.
Let $x=$ the number (in millions) who had no health insurance.
Step 3 Write an equation. To get an equation, set up a proportion

$$
\frac{9.9}{100}=\frac{x}{74,510,000}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 4
\end{array} \text { Solving a Proportion (cont'd) } \\
& \cline { 1 - 1 } \\
& \frac{9.9}{100}=\frac{x}{74,510,000} \\
& 74,510,000 \cdot \frac{9.9}{100}=74,510,000 \cdot \frac{x}{74,510,000} \\
& 745,100 \cdot 9.9=x \\
& x=7,376,490
\end{aligned}
$$

Step 5 State the answer. There were 7,376,490 children under 18 years of age in the United States with no health insurance in 2008

Step 6 Check. The ratio $\frac{7,376,490}{74,510,000}=\frac{9.9}{100}$.

CLASSROOM
 Solving a Proportion Involving Rates (cont'd)
 EXAMPLE 5

quation. She knows that she can drive 390 miles with 15 gallons of gasoline. She wants to drive 800 miles using $(6+x)$ gallons of gasoline. Set up a proportion.

Step 4 Solve. $\frac{390}{15}=\frac{800}{6+x}$

$$
\frac{26}{1}=\frac{800}{6+x} \quad \text { Reduce }
$$

$26(6+x)=800$
$156+26 x=800$
$26 x=644$
$x=\frac{644}{26}$
$x \approx 24.8$

CLASSROOM Solving a Proportion Involving Rates EXAMPLE 5

Lauren's car uses 15 gal of gasoline to drive 390 mi . She has 6 gal of gasoline in the car, and she wants to know how much more gasoline she will need to drive 800 mi . If we assume that the car continues to use gasoline at the same rate, how many more gallons will she need?

Solution:

Step 1 Read the problem

Step 2 Assign a variable.

Let $x=$ the additional number of gallons needed

\section*{| CLASSROOM | |
| :---: | :--- |
| EXAMPLE 6 | Solving a Problem about Distance, Rate, and Time |}

A plane travels 100 mi against the wind in the same time that it takes to travel 120 mi with the wind. The wind speed is 20 mph . Find the speed of the plane in still air.

Solution:

Step 1 Read the problem.

We must find the speed of the plane in still air.

Step 2 Assign a variable.

Let $x=$ the speed of the plane in still air. Use $d=r t$, to complete the table (next slide).

	\boldsymbol{d}	\boldsymbol{r}	\boldsymbol{t}
Against Wind	100	$x-20$	$\frac{100}{x-20}$
With Wind	120	$x+20$	$\frac{100}{x+20}$

Step 3 Write an equation. Since the time against the wind equals the time with the wind, we set up this equation.

$$
\frac{100}{x-20}=\frac{120}{x+20}
$$

Slide 7.5-14

EXAMPLE 6 Solving a Problem about Distance, Rate, and Time (cont'd)
Step 5 State the answer.
The speed of the airplane is 220 mph in still air.
Step 6 Check.

$$
\begin{aligned}
\frac{100}{220-20} & =\frac{120}{220+20} \\
\frac{100}{200} & =\frac{120}{240} \\
\frac{1}{2} & =\frac{1}{2}
\end{aligned}
$$

Dona Kenly drove 300 mi north from San Antonio, mostly on the freeway. She usually averaged 55 mph , but an accident slowed her speed through Dallas to 15 mph . If her trip took 6 hr , how many miles did she drive at the reduced rate?

Solution:

Step 1 Read the problem.
We must find how many miles she drove at the reduced speed.

Step 2 Assign a variable.

Let $x=$ the distance at reduced speed.
Use $d=r t$, to complete the table (next slide)

CLASSROOM
EXAMPLE 7

	\boldsymbol{d}	\boldsymbol{r}	\boldsymbol{t}
Normal Speed	$300-x$	55	$\frac{300-x}{55}$
Reduced Speed	x	15	$\frac{x}{15}$

Step 3 Write an equation.

Time on freeway	plus	Time at reduced speed	equals 6 hr.
$\frac{300-x}{55}$	+	$\frac{x}{15}$	$=6$

CLASSROOM
Solving a Problem about Distance, Rate, and Time (cont'd)
Step 4 Solve.
Multiply by the LCD, 165.

$$
\begin{aligned}
165\left(\frac{300-x}{55}+\frac{x}{15}\right) & =165 \cdot 6 \\
3(300-x)+11 x & =990 \\
900-3 x+11 x & =990 \\
8 x & =90 \\
x & =\frac{90}{8} \text { or } 11 \frac{1}{4}
\end{aligned}
$$

Step 5 State the answer. She drove $11 \frac{1}{4}$ miles at reduced speed.

Step 6 Check. The check is left to the student.

Objective 5

PROBLEM-SOLVING HINT

People work at different rates. If the letters r, t, and A represent the rate at which work is done, the time required, and the amount of work accomplished, respectively, then $A=r t$. Notice the similarity to the distance formula, $d=r t$.

Amount of work can be measured in terms of jobs accomplished. Thus, if 1 job is completed, then $A=1$, and the formula gives the rate as

$$
1=r t, \quad \text { or } \quad r=\frac{1}{t}
$$

Solve applications about work rates.

Rate of Work

If a job can be accomplished in t units of time, then the rate of work
is

$\frac{1}{t}$ job per unit of time.

$\begin{array}{ll}\text { CLASSROOM } \\ \text { EXAMPLE } 8 & \text { Solving a Problem about Work }\end{array}$ EXAMPLE 8

Stan needs 45 minutes to do the dishes, while Bobbie can do them in 30 minutes. How long will it take them if they work together?
Solution:
Step 1 Read the problem.
We must determine how long it will take them working together to wash the dishes.
Step 2 Assign a variable.
Let $x=$ the time it will take them working together.

Rate Time Working Together Fractional Part of the Job Done Stan $\frac{1}{45}$ x $\frac{1}{45} x$ Bobbie $\frac{1}{30}$ x $\frac{1}{30} x$
Slide 7.5-22

CLASSROOM
 EXAMPLE 8
 Solving a Problem about Work (cont'd)

Step 5 State the answer.

It will take them 18 minutes working together.

Step 6 Check

The check is left to the student.

