

Define rational functions and describe their domains. A function that is defined by a quotient of polynomials is called a rational function and has the form $f(x) = \frac{P(x)}{Q(x)}, \text{ where } Q(x) \neq 0.$ The domain of the rational function consists of all real numbers except those that make Q(x)—that is, the denominator—equal to 0. For example, the domain of $f(x) = \frac{2}{\frac{x-5}{Cannot \text{ equal } 0}}$ includes all real numbers except 5, because 5 would make the denominator equal to 0.

Slide 7.

CLASSROOM EXAMPLE 4	Multiplying Rat	ional Expressions	
Multiply.			
$\frac{c^2+2c}{c^2-4}\cdot\frac{c^2-4c}{c^2-4c}$	$\frac{+4}{c}$	$\frac{m^2-16}{m+2} \cdot \frac{1}{m+4}$	
Solution:			
$=\frac{c(c+2)}{(c-2)(c+2)}\cdot$	$\frac{(c-2)(c-2)}{c(c-1)}$	$=\frac{(m-4)(m+4)}{m+2}\cdot\frac{1}{m}$	$\frac{1}{n+4}$
$=\frac{(c-2)}{(c-1)}$		$=\frac{m-4}{m+2}$	
Copyright © 2012, 2008, 2004 Pea	urson Education. Inc.		Slide 7.1- 11

Divide rational expressions. Dividing Rational Expressions To divide two rational expressions, multiply the first (the dividend) by the reciprocal of the second (the divisor). State 7.1-14

CLASSROOM EXAMPLE 5	Dividing Rational Expressions	
Divide.		
$\frac{5p+2}{6} \div \frac{15p+6}{5}$	$\frac{q^2+2q}{5+q}\div\frac{4-q^2}{3q-6}$	
Solution:		
$=\frac{5p+2}{6}\cdot\frac{5}{15p+6}$	$= \frac{q^2 + 2q}{5 + q} \cdot \frac{3q - 6}{4 - q^2}$	
$=\frac{5p+2}{6}\cdot\frac{5}{3(5p+1)}$	2) $= \frac{q(q+2)}{5+q} \cdot \frac{3(q-2)}{(2-q)(2+q)}$	
$=\frac{5}{18}$	$=\frac{q(q+2)3(q-2)}{(-1)(5+q)(q-2)(q+2)}$)
	$=-rac{3q}{5+q}$	0

Add and subtract rational expressions with the same denominator. Adding or Subtracting Rational Expressions Step 1 If the denominators are the same, add or subtract the numerators. Place the result over the common denominator.

If the denominators are different, first find the least common denominator. Write all rational expressions with this least common denominator, and then add or subtract the numerators. Place the result over the common denominator.

Slide 7.

Step 2 Simplify. Write all answers in lowest terms.

CLASSROOM EXAMPLE 1	Adding and Subt	racting Rational Expressions Same Denominator
Add or subtract a	s indicated.	
	Solution:	
$\frac{7x}{9} + \frac{y}{9}$	$=\frac{7x+y}{9}$	
$\frac{8}{3x^3} - \frac{14}{3x^3}$	$=\frac{8-14}{3x^3}$	$=\frac{-6}{3x^3}$ $=\frac{-2}{x^3}$
$\frac{r}{r^2 - t^2} + \frac{t}{r^2 - t^2}$	$\frac{1}{r^2 - t^2} = \frac{r+t}{r^2 - t^2}$	$=\frac{r+t}{(r+t)(r-t)} = \frac{1}{r-t}$
$\frac{6}{x^2 + 3x - 18} + \frac{1}{3}$	$\frac{x}{x^2+3x-18}$	$=\frac{6+x}{x^2+3x-18}$
		6+x 1
		$=\frac{1}{(x+6)(x-3)}=\frac{1}{x-3}$
	Therefore Inc.	Slide

Find a least common denominator.

Finding the Least Common Denominator

Step 1 Factor each denominator.

CLASSRO EXAMPL	ООМ Е 2	Finding Lea	st Common Denominators	
Find the LC	D for	each group of	denominators.	
$10a^{3}b^{5}, 15$	a^2b^6			
Solution:				
Factor.	10 <i>a</i> ³l	þ ⁵	$= 2 \cdot 5 \cdot a^3 \cdot b^5$	
	15 <i>a</i> ² <i>l</i>	9 ⁶	$= 3 \bullet 5 \bullet a^2 \bullet b^6$	
LCD	= 2 •	$3 \cdot 5 \cdot a^3 \cdot b^6$	$= 30a^{3}b^{6}$	
<i>z</i> , <i>z</i> + 6				
Each deno	minato	r is already fac	ctored.	
$\mathbf{LCD} = \mathbf{z}(\mathbf{z}$	+ 6)			
				Slido 7.2-7

CLASSROOM EXAMPLE 2	Finding Least	Common Denominators (cont'd)
Find the LCD for $m^2 - 16$, $m^2 + 8n$	each group of de n + 16	nominators.
Solution:		
Factor.	<i>m</i> ² – 16	= (m+4)(m-4)
ı	<i>m</i> ² + 8 <i>m</i> + 16	$= (m+4)^2$
LCD =	$= (m+4)^2(m-4)$	
$x^2 - 2x + 1$, $x^2 - 3x^2 -$	4x + 3, 4x - 4	
,	$x^2 - 2x + 1$	=(x-1)(x-1)
ç	$x^2 - 4x + 3$	=(x-1)(x-3)
2	4 <i>x</i> – 4	=4(x-1)
LCD =	$=4(x-1)^2(x-3)$	

CLASSROOM EXAMPLE 4	Subtracting Rational Expres	ssions				
Subtract.						
5x + 7 - x - 14	5x + 7 - x - 14					
2x+7 $2x+7$	-					
Solution:						
The denominators The subtraction s the second ration	s are already the same for both ign must be applied to both terr al expression.	rational expressions. ns in the numerator of				
$-\frac{5x+7-(-x-1)}{2}$	(-14) $5x + 7 + x + 14$	6x+21				
$-\frac{2x+7}{2}$	$-\frac{2x+7}{2}$	$-\frac{1}{2x+7}$				
	$=\frac{3(2x+7)}{2x+7}$	= 3				
Copyright © 2012, 2008, 2004. Pea	rson Education. Inc.	Slide 7.2- 11				

CLASSROOM EXAMPLE 4	Subtracting Ratio	nal Expressions (cont'd)	
Subtract.			
$\frac{2}{r+3}$			
r-2 $r-1$			
Solution:			
The LCD is $(r-2)$	(<i>r</i> −1).		
			、 、
$=\frac{2(r-1)}{r-1}$	$-\frac{(r+3)(r-2)}{(r-2)}$	$=\frac{2r-2-(r^2+r-6)}{r^2+r-6}$)
(r-2)(r-1)	(r-1)(r-2)	(r-2)(r-1)	
2		2	
$=\frac{2r-2-r^2-r}{(r-2)}$	$\frac{7+6}{1}$	$=\frac{-r^{2}+r+4}{(r-1)(r-1)}$	
(r-2)(r-1)(r-1)(r-1)(r-1)(r-1)(r-1)(r-1)(r-1	1)	(r-2)(r-1)	

	CLASSROOM EXAMPLE 5	Adding and Subtracting Rational Expressions (Denominators A	re Opposites)
A	dd.		
$\frac{1}{x}$	$\frac{2}{-3} + \frac{1}{3-x}$.		
s	olution:		
To ai	To get a common denominator of $x - 3$, multiply both the numerator and denominator of the second expression by -1 .		
=	$\frac{2}{x-3} + \frac{1(-3)}{(3-x)^2}$	$\frac{1}{0(-1)} = \frac{2}{x-3} + \frac{-1}{x-3} = \frac{2+(-1)}{x-3}$	$=\frac{1}{x-3}$
Copyri	eht © 2012, 2008, 2004, Pear	son Education. Inc.	Slide 7.2- 13

CLASSROOM
EXAMPLE 6
Adding and Subtracting Three Rational Expressions
Add and subtract as indicated.
$$\frac{4}{x-5} + \frac{-2}{x} - \frac{10}{x^2-5x}$$
Solution:
$$= \frac{4}{x-5} + \frac{-2}{x} - \frac{10}{x(x-5)}$$
$$= \frac{4x}{(x-5)x} + \frac{-2(x-5)}{x(x-5)} - \frac{10}{x(x-5)}$$
$$= \frac{4x + (-2)(x-5) - 10}{x(x-5)}$$
$$= \frac{4x + (-2)(x-5) - 10}{x(x-5)}$$
$$= \frac{4x + (-2x + 10 - 10)}{x(x-5)} = \frac{2x}{x(x-5)} = \frac{2}{x-5}$$
Side 7.2-14

CLASSROOM EXAMPLE 7	Subtracting Rational Expressions	
Subtract.		
-a	4 <i>a</i>	
$\frac{1}{a^2 + 3a - 4} - \frac{1}{a^2}$	r + 7a + 12	
Solution: $=\frac{1}{a}$	$\frac{-a}{(a+4)(a-1)} - \frac{4a}{(a+4)(a+3)}$	
LCD is $(a+4)(a+4)$	(a-1)(a+3).	
	-a(a+3) $4a(a-1)$	
$=\overline{(a)}$	(a+4)(a-1)(a+3) = (a+4)(a-1)(a+3))
Copyright © 2012, 2008, 2004, Pea	rson Education Inc	Slide 7.2- 15

CLASSROOM
EXAMPLE 7Subtracting Rational Expressions (cont'd)
$$= \frac{-a(a+3)-4a(a-1)}{(a+4)(a-1)(a+3)}$$
 $= \frac{-a^2-3a-4a^2+4a}{(a+4)(a-1)(a+3)}$ Distributive property $= \frac{-5a^2+a}{(a+4)(a-1)(a+3)}$ Combine terms in the numerator.

	CLASSROOM EXAMPLE 8	Adding Rational Expressions	
Ad	ld.		
$\overline{p^2}$	$\frac{4}{p^2-6p+9}+\frac{1}{p}$	$\frac{1}{p^2+2p-15}$	
Se	plution: $=\frac{1}{p}$	$\frac{4}{(p-3)(p-3)} + \frac{1}{(p+5)(p-3)}$	
L	CD is $(p-3)^2$	(p+5).	
	= (p	$\frac{4(p+5)}{(p-3)^2(p+5)} + \frac{1(p-3)}{(p+5)(p-3)^2}$	
Constitution			Slide 7 2- 17

CLASSROOM EXAMPLE 8	Adding Rational Ex	pressions (cont'd)
$=\frac{4(p+5)+1(p-3)}{(p-3)^2(p+5)}$		
$=\frac{4\mu}{(p)}$	$(p+20+p-3)^2(p+5)$	Distributive property
=	$\frac{5p+17}{(p-3)^2(p+5)}$	Combine terms in the numerator.
Copyright © 2012, 2008, 2004 Pear	rson Education. Inc.	Slide 7.2- 18

Objective 1 Simplify complex fractions by

simplifying the numerator and denominator (Method 1). Simplify complex fractions by simplifying the numerator and denominator (Method 1).
Simplifying a Complex Fraction: Method 1
Step 1 Simplify the numerator and denominator separately.
Step 2 Divide by multiplying the numerator by the reciprocal of the denominator.
Step 3 Simplify the resulting fraction if possible.

 CLASSROOM EXAMPLE 1
 Determining the Domains of the Variables in Rational Equations

 Find the domain of the variable in each equation.
 Solution:

 $\frac{3}{x} + \frac{1}{4} = \frac{9}{4x}$ The domains of the three rational expressions are, $\{x | x \neq 0\}, (-\infty, \infty)$, and $\{x | x \neq 0\}$. The intersection of these three domains is all real numbers except 0, which may be written $\{x | x \neq 0\}$.

 $\frac{2}{x^2 - 4} + \frac{1}{x + 2} = \frac{1}{x - 2}$

 The domains of the three rational expressions are, $\{x | x \neq \pm 2\}, \{x | x \neq 2\}, \{x | x \neq 2\}$.

Solve rational expressions.

To solve rational equations, we multiply all terms in the equation by the LCD to clear the fractions. *We can do this only with equations, not expressions.*

Solving an Equation with Rational Expressions

Step 1 Determine the domain of the variable.

- Step 2 Multiply each side of the equation by the LCD to clear the fractions.
- Step 3 Solve the resulting equation.
- Step 4 Check that each proposed solution is in the domain, and discard any values that are not. Check the remaining proposed solution(s) in the original equation.
- Slide 7.4- 5

CLASSROOM EXAMPLE 2	Solving a Rational Equation (cont'd)	
Check. 3	$\frac{2}{5}$	
- 20	$\frac{1}{2}$ $\frac{1}{x}$ $\frac{1}{4x}$	
3	2 5	
$-\frac{1}{20}$	$\frac{1}{0} + \frac{1}{5} = \frac{1}{4(5)}$	
3	3 2 5	
2	$\frac{1}{0} + \frac{1}{5} = \frac{1}{20}$	
3	8 5	
$-\frac{1}{20}$	$\frac{1}{20} + \frac{1}{20} = \frac{1}{20}$	
	5 5	
	$\overline{20} = \overline{20}$ The solution set is {5}.	
When each s resulting "soli determine as the original	ide of an equation is multiplied by a variable expression, the utions" may not satisfy the original equation. You must either and observe the domain or check all proposed solutions in equation. It is wise to do both.	
Copyright © 2012, 2008, 2004 Pea	urson Education. Inc. SI	lide 7.4- 7

CLASSROOM
 Solving a Rational Equation with No Solution

 Solve.

$$\frac{3}{x+1} = \frac{1}{x-1} - \frac{2}{x^2-1}$$

 Solution:
 The domain, excludes ±1. The LCD is $(x+1)(x-1)$.

 $(x+1)(x-1)\left(\frac{3}{x+1}\right) = (x+1)(x-1)\left(\frac{1}{x-1} - \frac{2}{x^2-1}\right)$
 $3(x-1) = x+1-2$
 $3x-3 = x-1$
 $2x = 2$
 $x = 1$
 $x = 1$
 $x = 1$
 $x = 1$

CLASSROOM
EXAMPLE 5
 Solving a Rational Equation (cont'd)

$$(x+3)(x-1)\left(\frac{2}{x+3}-\frac{1}{x-1}\right) = (x+3)(x-1)\left(\frac{-x^2-3x}{x^2+2x-3}\right)$$
 $2(x-1)-1(x+3) = -x^2 - 3x$
 $2(x-1)-1(x+3) = -x^2 - 3x$
 $2x-2-x-3 = -x^2 - 3x$
 $x-5 = -x^2 - 3x$
 $x-5 = -x^2 - 3x$
 $x^2 + 4x - 5 = 0$
 $(x+5)(x-1) = 0$
 $x+5=0$ or $x-1=0$
 $x=-5$ or $x=1$

CLASSROOM
EXAMPLE 5
 Solving a Rational Equation (cont'd)

$$\frac{2}{x+3} - \frac{1}{x-1} = \frac{-x^2 - 3x}{x^2 + 2x - 3}$$
 $x = -5$ or $x = 1$

 Because 1 is not in the domain of the equation, it is not a solution.

 $\frac{2}{-5+3} - \frac{1}{-5-1} = \frac{-5^2 - 3(-5)}{(-5)^2 + 2(-5) - 3}$
 $\frac{2}{-2} - \frac{1}{-6} = \frac{-25 + 15}{25 - 10 - 3}$
 $-1 + \frac{1}{6} = -\frac{10}{12}$
 $-5 = -\frac{5}{6}$

 The solution set is {-5}.

CLASSROOM EXAMPLE 1	Finding the Value of a Variable in a Formula	
Use the formula -	$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$ to find <i>p</i> if <i>f</i> = 15 cm and <i>q</i> = 25 cm.	
Solution:	$\frac{1}{c} = \frac{1}{c} + \frac{1}{c}$	
	J p q	
	$\frac{1}{15} = \frac{1}{p} + \frac{1}{25}$ Let $f = 15$ and $q = 2$	5.
75 ₁	$p \cdot \frac{1}{15} = 75p\left(\frac{1}{p} + \frac{1}{25}\right)$ Multiply by the LCE), 75 <i>p</i> .
	5p = 75 + 3p	
	2p = 75	
	$p = \frac{75}{2}$	
Convright @ 2012 2008 2004 Pear	rson Education Inc	Slide 7.5- 3

Slide 7.5- 13

Against Wind	100		100
		x-20	$\frac{100}{x-20}$
With Wind	120	x + 20	$\frac{100}{x+20}$
time with t	the wind, we set u $\frac{100}{x-20} =$	$\frac{120}{x+20}$	

CLASSROOM EXAMPLE 6	Solving a Problem about Distance, Rate, and Time (cont'd)
Step 4 Solve.	
Multiply b	y the LCD (<i>x</i> − 20)(<i>x</i> + 20).
	$\frac{100}{x-20} = \frac{120}{x+20}$
(x-20)(x	$(+20)\frac{100}{x-20} = (x-20)(x+20)\frac{120}{x+20}$
	100(x+20) = 120(x-20)
	100x + 2000 = 120x - 2400
	4400 = 20x
	220 = x
ovright © 2012-2008-2004 Pe-	urson Education. Inc. Slid

		d	r	t
N S	ormal peed	300 – <i>x</i>	55	$\frac{300-x}{55}$
R S	educed peed	x	15	$\frac{x}{15}$
51ep 3		Time a	t e	quals
rime o reewa	y plu	s reduced sp	beed	6 hr.

Slide 7.5- 2

CLASSROOM
EXAMPLE 1Finding the Constant of Variation and the Variation EquationIf 7 kg of steak cost \$45.50, how much will 1 kg of steak cost?Solution:Let C represent the cost of p kilograms of steak. C varies directly as p, so C = kp.Here k represents the cost of one kilogram of steak. Since C = 45.50 when p = 7, $45.50 = k \cdot 7$. $k = \frac{45.50}{7}$ k = 6.50One kilogram of steak costs \$6.50, and C and p are related by

C = 6.50p.

It costs \$52 to use 800 kilowatt-hours of electricity. How much will 650 kilowatt-hours cost?

Solution:

Slide 7.

Let *c* represent the cost of using *h* kilowatt-hours. Use c = kh with c = 52 and h = 800 to find *k*.

$$c = kh$$
$$52 = k(800)$$
$$52$$

$$\frac{52}{800} = k$$
$$\frac{13}{200} = k$$

CLASSROOM
EXAMPLE 2Solving a Direct Variation Problem (cont'd)So $c = \frac{13}{200} h$.Let h = 650. Find c. $c = \frac{13}{200} (650)$ c = 42.25Thus, 650 kilowatt-hours costs \$42.25.

CLASSROOM EXAMPLE 3	Solving a Direct Variation Problem			
Suppose y varies directly as the cube of x, and $y = 24$ when $x = 2$. Find y when $x = 4$.				
Solution: Step 1 y varies directly as the cube of x, so $y = kx^3$.				
	$24 = k(2)^3$			
24 = k(8)				
	3 = <i>k</i>			
Step 3 Thus, y =	3 <i>x</i> ³ .			
Step 4 When x =	$= 4, y = 3(4)^3 = 3(64) = 192.$			
	Slide			

 CLASSROOM EXAMPLE 7
 Solving a Combined Variation Problem

 Suppose z varies jointly as x and y² and inversely as w. Also, $z = \frac{3}{8}$ when x = 2, y = 3, and w = 12. Find z, when x = 4, y = 1, and w = 6.

 Solution:

 z varies jointly as x and y² and inversely as w, so

 $Z = \frac{kxy^2}{w}$.

CLASSROOM EXAMPLE 7	Solving a Combined Variation Problem (cc	ont'd)
$z = \frac{3}{8}$ when $x =$	2, $y = 3$ and $w = 12$, so $\frac{3}{8} = \frac{k(2)(3)^2}{12}$ $\frac{3}{8} = \frac{k(3)}{2}$ $k = \frac{3}{8} \cdot \frac{2}{3} = \frac{1}{4}$	
Thus, $z = \frac{\frac{1}{4}xy^2}{w}$	$\frac{xy^2}{4w}$.	
vvnen x = 4, y = 1 Copyright © 2012, 2008, 2004, Pea	, and $w = 6, z = \frac{1}{4(6)} = \frac{1}{6}$.	Slide 7.6- 18