8.1 Radical Expressions and Graphs

Objectives
1 Find roots of numbers.
2 Find principal roots.
3 Graph functions defined by radical expressions.
4 Find nth roots of nth powers.
5 Use a calculator to find roots.

Find roots of numbers.

The number a is the radicand.
n is the index or order.
The expression is the radical.

Radical

Find roots of numbers.

The opposite (or inverse) of squaring a number is taking its square root.

$$
\sqrt{36}=6 \text {, because } 6^{2}=36 \text {. }
$$

We now extend our discussion of roots to include cube roots $\sqrt[3]{ }$, fourth roots $\sqrt[4]{ }$, and higher roots.

$\qquad \sqrt[n]{a}$
The nth root of a, written $\sqrt[n]{a}$, is a number whose nth power equals
a. That is,
$\qquad \sqrt[n]{a}=b$ means $b^{n}=a$.

$$
\begin{array}{ll}
\begin{array}{|l}
\begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 1
\end{array}
\end{array} & \text { Simplifying Higher Roots } \\
\begin{array}{l}
\text { Simplify. } \\
\text { Solution: }
\end{array} \\
\sqrt[3]{27} & =3, \text { because } 3^{3}=27 \\
\sqrt[3]{216} & =6, \text { because } 6^{3}=216 \\
\sqrt[4]{256} & =4, \text { because } 4^{4}=256 \\
\sqrt[5]{243} & =3, \text { because } 3^{5}=243 \\
\sqrt[4]{\frac{16}{81}} & =\frac{2}{3}, \text { because }\left(\frac{2}{3}\right)^{4}=\frac{16}{81} \\
\sqrt[3]{0.064} & =0.4, \text { because } 0.4^{3}=0.064
\end{array}
$$

Find principal roots.

nth Root

Case 1 If n is even and a is positive or 0 , then
$\sqrt[n]{a}$ represents the principal nth root of a,
$-\sqrt[n]{a}$ represents the negative nth root of a.
Case 2 If n is even and a is negative, then
$\sqrt[n]{a}$ is not a real number.
Case 3 If n is odd, then
there is exactly one real nth root of a, written $\sqrt[n]{a}$.

Graph functions defined by radical expressions.

Square Root Function

The domain and range of the square root function are $[0, \infty)$.

Graph functions defined by radical expressions.
Cube Root Function

The domain and range of the cube function are $(-\infty, \infty)$

CLASSROOM
EXAMPLE 3

Graphing Functions Defined with Radicals
Graph the function by creating a table of values. Give the domain and
range.
$f(x)=\sqrt{x+2}$

Solution:

x	$f(x)$
-2	$\sqrt{-2+2}=0$
-1	$\sqrt{-1+2}=1$
0	$\sqrt{0+2}=1.41$
2	$\sqrt{2+2}=2$

Domain: $[-2, \infty)$

Range: [0, ∞)

Objective 4

Find \boldsymbol{n} th roots of \boldsymbol{n} th powers.

For any real number $a, \sqrt{a^{2}}=|a|$.

That is, the principal square root of a^{2} is the absolute value of a.

CLASSROOM	
EXAMPLE 4	Simplifying Square Roots by Using Absolute Value

Find each square root.
Solution:
$\sqrt{15^{2}}=|15|=15 \quad \sqrt{(-12)^{2}}=|-12|=12$
$\sqrt{y^{2}}=|y|$

$$
\sqrt{\left(-y^{2}\right)}=|-y|=|y|
$$

Find \boldsymbol{n} th roots of \boldsymbol{n} th powers.
\square

CLASSROOM EXAMPLE 5	Simplifying Higher Roots by Using Absolute Value
Simplify each root. Solution:	
$\sqrt[4]{(-5)^{4}} \quad=\|-5\|=5$	
$\sqrt[5]{(-5)^{5}}=-5 n$ is odd	
$-\sqrt[6]{(-3)^{6}}=-\|-3\|=-3$	
$-\sqrt[4]{m^{8}}$	$m^{2} n$ is even
$\sqrt[3]{x^{24}}$	
$\sqrt[6]{y^{18}}$	$\left.y^{3}\right)^{6}=\left\|y^{3}\right\|$

Objective 5

Use a calculator to find roots.

CLASSROOM EXAMPLE 6	Findin	oximation	for Roots	
Use a calculator to approximate each radical to three decimal places. Solution:				
$\sqrt{17}=4.123$		$-\sqrt{362}$	$=-19.026$	
$\sqrt[3]{9482}=21.166$		$\sqrt[4]{6825}$	$=9.089$	

CLASSROON

Solution:

$$
f=\frac{1}{2 \pi \sqrt{L C}} f=\frac{1}{2 \pi \sqrt{\left(6 \times 10^{-5}\right)\left(4 \times 10^{-9}\right)}} \approx 324,874
$$

About 325,000 cycles per second.

