8.2 Rational Exponents

Objectives
1 Use exponential notation for nth roots.
2 Define and use expressions of the form $a^{m / n}$.

3 Convert between radicals and rational exponents.
4 Use the rules for exponents with rational exponents.

Use exponential notation for nth roots.

$\mathbf{a}^{1 / n}$
If $\sqrt[n]{a}$ is a real number, then $\boldsymbol{a}^{1 / n}=\sqrt[n]{\boldsymbol{a}}$.

Notice that the denominator of the rational exponent is the index of the radical.
EXAMPLE 1

Evaluate each exponential

Solution:

$$
\begin{array}{lll}
32^{1 / 5} & =\sqrt[5]{32} & =2 \\
64^{1 / 2} & =\sqrt[2]{64} & =\sqrt{64}=8 \\
-81^{1 / 4} & =-\sqrt[4]{81} & =-3 \\
(-81)^{1 / 4} & =\sqrt[4]{-81} & \begin{array}{l}
\text { Is not a real number because the radicand } \\
-81, \text { is negative and the index, } 4, \text { is even. }
\end{array} \\
(-64)^{1 / 3} & =\sqrt[3]{-64} & =-4 \\
\left(\frac{1}{27}\right)^{1 / 3} & =\sqrt[3]{\frac{1}{27}} & =\frac{1}{3}
\end{array}
$$

Define and use expressions of the form $a^{m / n}$.
\square
$a^{m / n}$
If m and n are positive integers with m / n in lowest terms, then
$\boldsymbol{a}^{m / n}=\left(\boldsymbol{a}^{1 / n}\right)^{m}$,
provided that $a^{1 / n}$ is a real number. If $a^{1 / n}$ is not a real number, then $\mathrm{a}^{m / n}$ is not a real number

Define and use expressions of the form $\mathbf{a}^{m / n}$.
If $a^{m / n}$ is a real number, then $a^{-m / n}=\frac{1}{a^{m / n}} \quad(a \neq 0)$.

CLASSROOM
EXAMPLE 3 Evaluating Exponentials with Negative Rational Exponents
Evaluate each exponential.
Solution:

$$
\begin{aligned}
& 81^{-3 / 4}=\frac{1}{81^{3 / 4}}=\frac{1}{\left(81^{1 / 4}\right)^{3}}=\frac{1}{(\sqrt[4]{81})^{3}}=\frac{1}{3^{3}}=\frac{1}{27} \\
& 36^{-3 / 2}=\frac{1}{36^{3 / 2}}=\frac{1}{\left(36^{1 / 2}\right)^{3}}=\frac{1}{(\sqrt{36})^{3}}=\frac{1}{6^{3}}=\frac{1}{216} \\
& \left(\frac{64}{25}\right)^{-3 / 2}=\left(\frac{25}{64}\right)^{3 / 2}=\left(\sqrt{\frac{25}{64}}\right)^{3}=\left(\frac{5}{8}\right)^{3}=\frac{125}{512}
\end{aligned}
$$

Define and use expressions of the form $a^{m / n}$.

$\boldsymbol{a}^{m / n}$
If all indicated roots are real numbers, then
$\boldsymbol{a}^{m / n}=\left(\boldsymbol{a}^{1 / n}\right)^{m}=\left(\boldsymbol{a}^{m}\right)^{1 / n}$.

Define and use expressions of the form $a^{m / n}$

Radical Form of $a^{m / n}$

If all indicated roots are real numbers, then

$$
a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

That is, raise a to the m th power and then take the nth root, or take the nth root of a and then raise to the m th power.

CLASSROOM
Write each exponential as a radical. Assume that all variables,
represent positive real numbers.
Solution:
$19^{1 / 2} \quad=(\sqrt[2]{19})^{1}=\sqrt{19}$
$11^{3 / 4}=(\sqrt[4]{11})^{3}$
$14 x^{2 / 3}=14(\sqrt[3]{x})^{2}$
$5 x^{3 / 5}-(2 x)^{3 / 5}=5(\sqrt[5]{x})^{3}-(\sqrt[5]{2 x})^{3}$
$x^{-5 / 7} \quad=\frac{1}{x^{5 / 7}}=\frac{1}{(\sqrt[7]{x})^{5}}$
$\left(x^{2}+y^{2}\right)^{1 / 3}=\sqrt[3]{x^{2}+y^{2}}$
Slide 8.2-10

Use the rules for exponents with rational exponents.

Rules for Rational Exponents

Let r and s be rational numbers. For all real numbers a and b for which the indicated expressions exist,

$$
\begin{aligned}
& a^{r} \cdot a^{s}=a^{r+s} \quad a^{-r}=\frac{1}{a^{r}} \quad \frac{a^{r}}{b^{s}}=a^{r-s} \\
& \left(a^{r}\right)^{s}=a^{r s} \quad(a b)^{r}=a^{r} b^{r} \\
& \left(\frac{a}{b}\right)^{r}=\frac{a^{r}}{b^{r}} \quad\left(\frac{a}{b}\right)^{-r}=\frac{b^{r}}{a^{r}} \quad a^{-r}=\left(\frac{1}{a}\right)^{r}
\end{aligned}
$$

CLASSROOM
 EXAMPLE 5

Write with only positive exponents. Assume that all variables represent positive real numbers

Solution:

$$
\begin{aligned}
3^{1 / 2} \cdot 3^{1 / 3} & =3^{1 / 2+1 / 3}=3^{3 / 6+2 / 6}=3^{5 / 6} \\
\frac{7^{2 / 3}}{7^{4 / 3}} & =7^{2 / 3-4 / 3}=7^{-2 / 3}=\frac{1}{7^{2 / 3}} \\
\left(\frac{a^{1 / 3} b^{2 / 3}}{b}\right)^{6} & =\left(a^{1 / 3} b^{2 / 3-1}\right)^{6} \quad=\left(a^{1 / 3} b^{-1 / 3}\right)^{6}=\left(a^{1 / 3}\right)^{6}\left(b^{-1 / 3}\right)^{6} \\
& =a^{(1 / 3) 6} b^{(-1 / 3) 6}=a^{6 / 3} b^{-6 / 3}=a^{2} b^{-2}=\frac{a^{2}}{b^{2}}
\end{aligned}
$$

CLASSROOM
 EXAMPLE 5
 Applying Rules for Rational Exponents (cont'd)

Write with only positive exponents. Assume that all variables represent positive real numbers.
Solution:

$$
r^{2 / 5}\left(r^{3 / 5}+r^{8 / 5}\right) \quad=r^{2 / 5} \cdot r^{3 / 5}+r^{2 / 5} \cdot r^{8 / 5}
$$

$$
=r^{2 / 5+3 / 5}+r^{2 / 5+8 / 5}=r^{5 / 5}+r^{10 / 5}=r+r^{2}
$$

$$
\begin{aligned}
& \left(\frac{a^{3} b^{-4}}{a^{-2} b^{1 / 5}}\right)^{-1 / 2}=\left(a^{3-(-2)} b^{-4-1 / 5}\right)^{-1 / 2}=\left(a^{5} b^{-21 / 5}\right)^{-1 / 2} \\
& =\left(a^{5}\right)^{-1 / 2}\left(b^{-21 / 5}\right)^{-1 / 2}=a^{-5 / 2} b^{21 / 10}=\frac{b^{21 / 10}}{a^{5 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { CLASSROOM } \\
& \text { EXAMPLE } 6
\end{aligned} \text { Applying Rules for Rational Exponents }
$$

