8.3 Simplifying Radical Expressions

Objectives
1 Use the product rule for radicals.
2 Use the quotient rule for radicals.

3 Simplify radicals.
4 Simplify products and quotients of radicals with different indexes.
5 Use the Pythagorean theorem.
6 Use the distance formula.

Use the product rule for radicals.

Product Rule for Radicals

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and n is a natural number, then $\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}$.

That is, the product of two nth roots is the nth root of the product.

CLASSROOM Using the Product Rule

Multiply. Assume that all variables represent positive real numbers.
Solution:
$\sqrt{5} \cdot \sqrt{13}=\sqrt{5 \cdot 13}=\sqrt{65}$
$\sqrt{7} \cdot \sqrt{x y}=\sqrt{7 x y}$

CLASSROOM Using the Product Rule
 EXAMPLE 2

Multiply. Assume that all variables represent positive real numbers
Solution:

$$
\begin{array}{ll}
\sqrt[3]{2} \cdot \sqrt[3]{7} & =\sqrt[3]{2 \cdot 7} \quad=\sqrt[3]{14} \\
\sqrt[6]{8 r^{2}} \cdot \sqrt[6]{2 r^{3}} & =\sqrt[6]{16 r^{5}} \\
\sqrt[5]{9 y^{2} x} \cdot \sqrt[5]{8 x y^{2}} & =\sqrt[5]{72 y^{4} x^{2}} \\
\sqrt{7} \cdot \sqrt[3]{5} & \begin{array}{l}
\text { This expression cannot be simplified by using } \\
\text { the product rule. }
\end{array}
\end{array}
$$

Use the quotient rule for radicals.

Quotient Rule for Radicals

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, $b \neq 0$, and n is a natural number,
then

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
$$

That is, the nth root of a quotient is the quotient of the nth roots

CLASSROOM
EXAMPLE 3
Using the Quotient Rule
Simplify. Assume that all variables represent positive real numbers
Solution:

$$
\begin{array}{ll}
\sqrt{\frac{100}{81}}=\frac{10}{9} & \sqrt{\frac{11}{25}}=\frac{\sqrt{11}}{5} \\
\sqrt[3]{\frac{18}{125}}=\frac{\sqrt[3]{18}}{\sqrt[3]{125}}=\frac{\sqrt[3]{18}}{5} & \sqrt{\frac{y^{8}}{16}}=\frac{\sqrt{y^{8}}}{\sqrt{16}}=\frac{y^{4}}{4} \\
-\sqrt[3]{\frac{x^{2}}{r^{12}}}=-\frac{\sqrt[3]{x^{2}}}{\sqrt[3]{r^{12}}}=-\frac{\sqrt[3]{x^{2}}}{r^{4}}
\end{array}
$$

CLASSROOM EXAMPLE 4	Simplitying Roots of Numbers
Simplify.	
Solution:	
$\sqrt{32}=\sqrt{1}$	准 $=\sqrt{16} \cdot \sqrt{2}=4 \sqrt{2}$
$\sqrt{300}=\sqrt{1}$	-0.3 $=\sqrt{100} \cdot \sqrt{3}=10 \sqrt{3}$
$\sqrt{35}$ Canno	be simplified further.
$\sqrt[3]{54}=\sqrt[3]{27}$	(2) $=\sqrt[3]{27} \cdot \sqrt[3]{2}=3 \sqrt[3]{2}$
$\sqrt[4]{243}=\sqrt[4]{3}$	$\cdot 3=3 \sqrt[4]{3}$

Simplify radicals.

Conditions for a Simplified Radical

1. The radicand has no factor raised to a power greater than or equal to the index.
2. The radicand has no fractions.
3. No denominator contains a radical.
4. Exponents in the radicand and the index of the radical have greatest common factor 1.

Be careful with which factors belong outside the radical sign and which belong inside.

\section*{| CLASSROOM | |
| :---: | :--- |
| EXAMPLE 6 | Simplifying Radicals by Using Smaller Indexes |
 Simplify. Assume that all variables represent positive real numbers.}

Solution:

$$
\begin{aligned}
& \sqrt[12]{2^{3}}=\left(2^{3}\right)^{1 / 2}=2^{1 / 4}=\sqrt[4]{2} \\
& \sqrt[6]{t^{2}}=\left(t^{2}\right)^{1 / 6}=(t)^{1 / 3}=\sqrt[3]{t}
\end{aligned}
$$

Simplify radicals.

CLASSROOM EXAMPLE 7

Simplify.

Solution:
$\sqrt{5} \cdot \sqrt[3]{4}$

$$
\begin{aligned}
& \text { The indexes, } 2 \text { and } 3 \text {, have a least common index of } \\
& \text { 6, use rational exponents to write each radical as a } \\
& \text { sixth root. } \\
& =5^{1 / 2}=5^{3 / 6}=\sqrt[6]{5^{3}}=\sqrt[6]{125} \\
& =4^{1 / 3}=4^{2 / 6}=\sqrt[6]{4^{2}}=\sqrt[6]{16} \\
& \sqrt{5} \cdot \sqrt[3]{4}=\sqrt[6]{125} \cdot \sqrt[6]{16}=\sqrt[6]{2000}
\end{aligned}
$$

Use the Pythagorean theorem.

Pythagorean Theorem

If c is the length of the longest side of a right triangle and a and b are lengths of the shorter sides, then

The longest side is the hypotenuse, and the two shorter sides are the legs, of the triangle. The hypotenuse is the side opposite the right angle.

CLASSROOM Using the Pythagorean Theorem

Find the length of the unknown side of the triangle.
Solution:
$c^{2}=a^{2}+b^{2}$
$c^{2}=14^{2}+8^{2}$
$c^{2}=196+64$
$c^{2}=260$
$c=\sqrt{260}$
$c=\sqrt{4 \cdot 65}$
$c=\sqrt{4} \cdot \sqrt{65}$
$c=2 \sqrt{65} \quad$ The length of the hypotenuse is $2 \sqrt{65}$.

Slide 8.3-14

$$
\begin{aligned}
& \begin{array}{l}
\text { CLASSROOM } \\
\text { EXAMPLE } 8
\end{array} \\
& \text { Find the length of the unknown side of the triangle. } \\
& \text { Solution: } \\
& \begin{array}{l}
c^{2}=a^{2}+b^{2} \\
6^{2}=4^{2}+b^{2} \\
36=16+b^{2} \\
20=b^{2} \\
\qquad \sqrt{20}=b \\
\sqrt{4 \cdot 5}=b \\
\sqrt{4} \cdot \sqrt{5}=b \\
2 \sqrt{5}=b
\end{array}
\end{aligned}
$$

Use the distance formula

Distance Formula
The distance between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

```
\begin{tabular}{l|l} 
CLASSROOM \\
EXAMPLE 9 & Using the Distance Formula
\end{tabular}
Find the distance between each pair of points
(2, -1) and (5, 3)
Solution:
Designate which points are \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\).
\(\left(x_{1}, y_{1}\right)=(2,-1)\) and \(\left(x_{2}, y_{2}\right)=(5,3)\)
\(d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
\(d=\sqrt{(5-2)^{2}+(3-(-1))^{2}}\)
\(d=\sqrt{(3)^{2}+(4)^{2}}\)
\(d=\sqrt{9+16}\)
\(d=\sqrt{25}=5\)
```


CLASSROOM EXAMPLE 9
 Using the Distance Formula (cont'd)

Find the distance between each pairs of points.
$(-3,2)$ and $(0,-4)$

Solution

Designate which points are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
$\left(x_{1}, y_{1}\right)=(-3,2)$ and $\left(x_{2}, y_{2}\right)=(0,-4)$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{2}\right)^{2}}$
$d=\sqrt{(0-(-3))^{2}+(-4-2)^{2}}$
$d=\sqrt{(3)^{2}+(-6)^{2}}$
$d=\sqrt{9+36}$
$d=\sqrt{45}=3 \sqrt{5}$

