8.4 Adding and Subtracting Radical Expressions

Objective
1 Simplify radical expressions involving addition and subtraction.

Simplify radical expressions involving addition and subtraction.

Only radical expressions with the same index and the same radicand may be combined. Expressions such as $3 \sqrt{3}+2 \sqrt[3]{3}$ or $5 \sqrt{3}+2 \sqrt{2}$ cannot be simplified by combining terms.

CLASSROOM	
EXAMPLE 1	Adding and Subtracting Radicals (cont'd)

Add or subtract to simplify each radical expression.
Solution:
$5 \sqrt{12 y}+6 \sqrt{75 y}, y \geq 0=5 \sqrt{4} \cdot \sqrt{3 y}+6 \sqrt{25} \cdot \sqrt{3 y}$

$$
=5 \cdot 2 \sqrt{3 y}+6 \cdot 5 \sqrt{3 y}
$$

$$
=10 \sqrt{3 y}+30 \sqrt{3 y}
$$

$$
=(10+30) \sqrt{3 y}
$$

$$
=40 \sqrt{3 y}
$$

$$
9 \sqrt{5}-4 \sqrt{10} \quad \begin{aligned}
& \text { This expression can not be } \\
& \text { simplified any further. }
\end{aligned}
$$

Simplify radical expressions involving addition and subtraction.

CLASSROOM EXAMPLE 2

Adding and Subtracting Radicals with Higher Indexes
Add or subtract to simplify the radical expression. Assume that all variables represent positive real numbers

$$
\begin{aligned}
-2 \sqrt[4]{32}-7 \sqrt[4]{162} & =-2 \sqrt[4]{16 \cdot 2}-7 \sqrt[4]{81 \cdot 2} \\
& =-2 \cdot 2 \sqrt[4]{2}-7 \cdot 3 \sqrt[4]{2} \\
& =-4 \sqrt[4]{2}-21 \sqrt[4]{2} \\
& =-25 \sqrt[4]{2}
\end{aligned}
$$

$$
\text { since } \sqrt{9+16}=\sqrt{25}=5 \text {, but } \sqrt{9}+\sqrt{16}=3+4=7 \text {. }
$$

CLASSROOM
EXAMPLE 2
Adding and Subtracting Radicals with Higher Indexes (cont'd)
CLASSROOM
EXAMPLE 2
Add or subtract to simplify the radical expression. Assume that all variables represent positive real numbers.

Add or subtract to simplify the radical expression. Assume that all variables represent positive real numbers.

Solution:

$$
\begin{aligned}
6 \sqrt[3]{16 z^{7}}+4 \sqrt{200 z^{5}} & =6 \sqrt[3]{8 z^{6} \cdot 2 z}+4 \sqrt{100 z^{4} \cdot 2 z} \\
& =6 \sqrt[3]{8 z^{6}} \cdot \sqrt[3]{2 z}+4 \sqrt{100 z^{4}} \cdot \sqrt{2 z} \\
& =6 \cdot 2 z^{2} \sqrt[3]{2 z}+4 \cdot 10 z^{2} \sqrt{2 z} \\
& =12 z^{2} \sqrt[3]{2 z}+40 z^{2} \sqrt{2 z}
\end{aligned}
$$ positive real numbers.

$$
2 \sqrt{\frac{32}{36}}+2 \frac{\sqrt{27}}{\sqrt{108}}
$$

$$
\begin{aligned}
& \text { Solution: } \\
& =2 \frac{\sqrt{16 \cdot 2}}{\sqrt{36}}+2 \frac{\sqrt{9 \cdot 3}}{\sqrt{36 \cdot 3}} \\
& =2\left(\frac{4 \sqrt{2}}{6}\right)+2\left(\frac{3 \sqrt{3}}{6 \sqrt{3}}\right) \\
& =\frac{4 \sqrt{2}}{3}+\frac{3}{3}=\frac{4 \sqrt{2}+3}{3}
\end{aligned}
$$

$$
\sqrt{\frac{80}{y^{4}}}+\sqrt{\frac{81}{y^{10}}}
$$

$$
\begin{aligned}
& \text { Solution: } \\
& =\frac{\sqrt{16 \cdot 5}}{\sqrt{y^{4}}}+\frac{\sqrt{81}}{\sqrt{y^{10}}} \\
& =\frac{4 \sqrt{5}}{y^{2}}+\frac{9}{y^{5}} \\
& =\frac{4 y^{3} \sqrt{5}}{y^{5}}+\frac{9}{y^{5}}=\frac{4 y^{3} \sqrt{5}+9}{y^{5}}
\end{aligned}
$$

