8.5 Multiplying and Dividing Radical Expressions

Objectives
1 Multiply radical expressions.
2 Rationalize denominators with one radical term.
3 Rationalize denominators with binomials involving radicals.
4 Write radical quotients in lowest terms.

Multiply radical expressions.

We multiply binomial expressions involving radicals by using the FOIL method from Section 5.4. Recall that this method refers to multiplying the First terms, Outer terms, Inner terms, and Last terms of the binomials.

CLASSROOM
EXAMPLE 1
Multiplying Binomials Involving Radical Expressions
Multiply, using the FOIL method.

$$
\begin{array}{ll}
\text { Solution: } \\
\begin{array}{ll}
(2+\sqrt{3})(1+\sqrt{5}) & =2+2 \sqrt{5}+1 \sqrt{3}+\sqrt{15} \\
(4+\sqrt{5})(4-\sqrt{5}) & =16-4 \sqrt{5}+4 \sqrt{5}-5=11 \\
& \text { This is a difference of squares. } \\
& =(\sqrt{13}-2)(\sqrt{13}-2) \\
(\sqrt{13}-2)^{2} & =13-2 \sqrt{13}-2 \sqrt{13}+4 \\
& =17-4 \sqrt{13}
\end{array}
\end{array}
$$

Rationalize denominators with one radical

Rationalizing the Denominator

A common way of "standardizing" the form of a radical expression is to have the denominator contain no radicals. The process of removing radicals from a denominator so that the denominator contains only rational numbers is called rationalizing the denominator. This is done by multiplying y a form of 1 .

Solution:

$\frac{5}{\sqrt{11}} \quad$| Multiply the numerator and denominator by the |
| :--- |
| denominator. This is in effect multiplying by 1. |

$$
\begin{aligned}
& =\frac{5 \cdot \sqrt{11}}{\sqrt{11} \cdot \sqrt{11}}=\frac{5 \sqrt{11}}{11} \\
\frac{5 \sqrt{6}}{\sqrt{5}} & =\frac{5 \sqrt{6} \cdot \sqrt{5}}{\sqrt{5} \cdot \sqrt{5}} \quad=\frac{5 \sqrt{30}}{5}=\sqrt{30}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 2
\end{array} \\
& \text { Rationalize the denominator. } \\
& \text { Solution: } \\
& \begin{aligned}
& \frac{-8}{\sqrt{18}}=\frac{-8 \cdot \sqrt{18}}{\sqrt{18} \cdot \sqrt{18}}=\frac{-8 \sqrt{18}}{18} \\
&=\frac{-8 \sqrt{9 \cdot 2}}{18} \\
&=\frac{-24 \sqrt{2}}{18} \\
&=\frac{-4 \sqrt{2}}{3} \\
& \text { Raviting Denominators with Square Roots (cont'd) } \\
& \text { Slide 8.5-7 }
\end{aligned} \\
&
\end{aligned}
$$

CLASSROOM	
EXAMPLE 3	Rationalizing Denominators in Roots of Fractions

Simplify the radical.
Solution:

$$
\begin{aligned}
-\sqrt{\frac{8}{45}} & =-\frac{\sqrt{8}}{\sqrt{45}} \quad=-\frac{2 \sqrt{10}}{3 \cdot 5} \quad \text { Product Rule } \\
& =-\frac{\sqrt{4 \cdot 2}}{\sqrt{9 \cdot 5}} \quad \text { Factor. } \quad=-\frac{2 \sqrt{10}}{15} \\
& =-\frac{2 \sqrt{2}}{3 \sqrt{5}} \quad \text { Product Rule } \\
& =-\frac{2 \sqrt{2} \cdot \sqrt{5}}{3 \sqrt{5} \cdot \sqrt{5}} \text { Multiply by radical in denominator. }
\end{aligned}
$$

CLASSROOM

Rationalizing Denominators in Roots of Fractions (cont'd)
EXAMPLE 3
Simplify the radical.
Solution:

$$
\begin{aligned}
\sqrt{\frac{200 k^{6}}{y^{7}}, y>0} & =\frac{\sqrt{200 k^{6}}}{\sqrt{y^{7}}} \\
& =-\frac{\sqrt{100 \cdot 2 \cdot\left(k^{3}\right)^{2}}}{\sqrt{y^{6} \cdot y}}=\frac{10 k^{3} \sqrt{2} \cdot \sqrt{y}}{y^{3} \sqrt{y} \cdot \sqrt{y}} \\
& =\frac{10 k^{3} \sqrt{2 y}}{y^{4}} \\
y^{3} \sqrt{y} &
\end{aligned}
$$

Rationalize denominators with binomials involving radicals.

Rationalizing a Binomial Denominator
Whenever a radical expression has a sum or difference with square
root radicals in the denominator, rationalize the denominator by
multiplying both the numerator and denominator by the conjugate of
the denominator.

CLASSROOM	
EXAMPLE 5	Rationalizing Binomial Denominators

Rationalize the denominator.
Solution:

$$
\begin{aligned}
\frac{4}{2-\sqrt{3}} & =\frac{4(2+\sqrt{3})}{2-\sqrt{3}(2+\sqrt{3})} \\
& =\frac{4(2+\sqrt{3})}{4-3} \\
& =\frac{4(2+\sqrt{3})}{1} \\
& =4(2+\sqrt{3}), \text { or } 8+4 \sqrt{3}
\end{aligned}
$$

CLASSROOM EXAMPLE 5 Rationalizing Binomial Denominators (cont'd)

 EXAMPLE 5Rationalizing Binomial Denominators (cont'd)

$$
\begin{aligned}
& =\frac{7(\sqrt{2}-\sqrt{13})}{(\sqrt{2}+\sqrt{13})(\sqrt{2}-\sqrt{13})} \\
& =\frac{7(\sqrt{2}-\sqrt{13})}{2-13} \\
& =\frac{7(\sqrt{2}-\sqrt{13})}{-11} \\
& =\frac{-7(\sqrt{2}-\sqrt{13})}{11}
\end{aligned}
$$

Rationalize the denominator.
Solution:

$$
\frac{\sqrt{3}+\sqrt{5}}{\sqrt{2}-\sqrt{7}} \quad=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{2}-\sqrt{7}} \cdot \frac{\sqrt{2}+\sqrt{7}}{\sqrt{2}+\sqrt{7}}
$$

Rationalize the denominator.
Solution:
$\sum_{\substack{\sqrt{k}+\sqrt{z} \\ k \neq z, k>0, z>0}}^{2}=\frac{2(\sqrt{k}-\sqrt{z})}{(\sqrt{k}+\sqrt{z})(\sqrt{k}-\sqrt{z})}$

$$
=\frac{\sqrt{6}+\sqrt{21}+\sqrt{10}+\sqrt{35}}{2-7}
$$

$$
=\frac{\sqrt{6}+\sqrt{21}+\sqrt{10}+\sqrt{35}}{-5}
$$

$$
=\frac{2(\sqrt{k}-\sqrt{z})}{k-z}
$$

$$
=\frac{-(\sqrt{6}+\sqrt{21}+\sqrt{10}+\sqrt{35})}{5}
$$

CLASSROOM EXAMPLE 6

Writing Radical Quotients in Lowest Terms (cont'd)
Write the quotient in lowest terms.
Solution:

$$
\begin{aligned}
& \frac{2 x+\sqrt{32 x^{2}}}{6 x}, x>0=\frac{2 x+4 x \sqrt{2}}{6 x} \quad \text { Product rule } \\
&=\frac{2 x(1+2 \sqrt{2})}{6 x} \\
&=\frac{2 x(1+2 \sqrt{2})}{2 \cdot 3 x} \\
& \begin{array}{l}
\text { Fivide out common the numerator. } \\
\text { factors. }
\end{array} \\
&=\frac{1+2 \sqrt{2}}{3}
\end{aligned}
$$

