8.1 Radical Expressions and Graphs

Objectives
1 Find roots of numbers.
2 Find principal roots.
3 Graph functions defined by radical expressions.
4 Find nth roots of nth powers.
5 Use a calculator to find roots.

Find roots of numbers.

The number a is the radicand.
n is the index or order.
The expression is the radical.

Radical

Find roots of numbers.

The opposite (or inverse) of squaring a number is taking its square root.

$$
\sqrt{36}=6 \text {, because } 6^{2}=36 \text {. }
$$

We now extend our discussion of roots to include cube roots $\sqrt[3]{ }$, fourth roots $\sqrt[4]{ }$, and higher roots.

$\qquad \sqrt[n]{a}$
The nth root of a, written $\sqrt[n]{a}$, is a number whose nth power equals
a. That is,
$\qquad \sqrt[n]{a}=b$ means $b^{n}=a$.

$$
\begin{array}{ll}
\begin{array}{|l}
\begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 1
\end{array}
\end{array} & \text { Simplifying Higher Roots } \\
\begin{array}{l}
\text { Simplify. } \\
\text { Solution: }
\end{array} \\
\sqrt[3]{27} & =3, \text { because } 3^{3}=27 \\
\sqrt[3]{216} & =6, \text { because } 6^{3}=216 \\
\sqrt[4]{256} & =4, \text { because } 4^{4}=256 \\
\sqrt[5]{243} & =3, \text { because } 3^{5}=243 \\
\sqrt[4]{\frac{16}{81}} & =\frac{2}{3}, \text { because }\left(\frac{2}{3}\right)^{4}=\frac{16}{81} \\
\sqrt[3]{0.064} & =0.4, \text { because } 0.4^{3}=0.064
\end{array}
$$

Find principal roots.

nth Root

Case 1 If n is even and a is positive or 0 , then
$\sqrt[n]{a}$ represents the principal nth root of a,
$-\sqrt[n]{a}$ represents the negative nth root of a.
Case 2 If n is even and a is negative, then
$\sqrt[n]{a}$ is not a real number.
Case 3 If n is odd, then
there is exactly one real nth root of a, written $\sqrt[n]{a}$.

Graph functions defined by radical expressions.

Square Root Function

The domain and range of the square root function are $[0, \infty)$.

Graph functions defined by radical expressions.
Cube Root Function

The domain and range of the cube function are $(-\infty, \infty)$

CLASSROOM
EXAMPLE 3

Graphing Functions Defined with Radicals
Graph the function by creating a table of values. Give the domain and
range.
$f(x)=\sqrt{x+2}$

Solution:

x	$f(x)$
-2	$\sqrt{-2+2}=0$
-1	$\sqrt{-1+2}=1$
0	$\sqrt{0+2}=1.41$
2	$\sqrt{2+2}=2$

Domain: $[-2, \infty)$

Range: [0, ∞)

Objective 4

Find \boldsymbol{n} th roots of \boldsymbol{n} th powers.

For any real number $a, \sqrt{a^{2}}=|a|$.

That is, the principal square root of a^{2} is the absolute value of a.

CLASSROOM	
EXAMPLE 4	Simplifying Square Roots by Using Absolute Value

Find each square root.
Solution:
$\sqrt{15^{2}}=|15|=15 \quad \sqrt{(-12)^{2}}=|-12|=12$
$\sqrt{y^{2}}=|y|$

$$
\sqrt{\left(-y^{2}\right)}=|-y|=|y|
$$

Find \boldsymbol{n} th roots of \boldsymbol{n} th powers.
\square

CLASSROOM EXAMPLE 5	Simplifying Higher Roots by Using Absolute Value
Simplify each root. Solution:	
$\sqrt[4]{(-5)^{4}} \quad=\|-5\|=5$	
$\sqrt[5]{(-5)^{5}}=-5 n$ is odd	
$-\sqrt[6]{(-3)^{6}}=-\|-3\|=-3$	
$-\sqrt[4]{m^{8}}$	$m^{2} n$ is even
$\sqrt[3]{x^{24}}$	
$\sqrt[6]{y^{18}}$	$\left.y^{3}\right)^{6}=\left\|y^{3}\right\|$

Objective 5

Use a calculator to find roots.

CLASSROOM EXAMPLE 6	Findin	oximation	for Roots	
Use a calculator to approximate each radical to three decimal places. Solution:				
$\sqrt{17}=4.123$		$-\sqrt{362}$	$=-19.026$	
$\sqrt[3]{9482}=21.166$		$\sqrt[4]{6825}$	$=9.089$	

CLASSROON

Solution:

$$
f=\frac{1}{2 \pi \sqrt{L C}} f=\frac{1}{2 \pi \sqrt{\left(6 \times 10^{-5}\right)\left(4 \times 10^{-9}\right)}} \approx 324,874
$$

About 325,000 cycles per second.

8.2 Rational Exponents

Objectives
1 Use exponential notation for nth roots.
2 Define and use expressions of the form $a^{m / n}$.

3 Convert between radicals and rational exponents.
4 Use the rules for exponents with rational exponents.

Use exponential notation for nth roots.

$\mathbf{a}^{1 / n}$
If $\sqrt[n]{a}$ is a real number, then $\boldsymbol{a}^{1 / n}=\sqrt[n]{\boldsymbol{a}}$.

Notice that the denominator of the rational exponent is the index of the radical.
EXAMPLE 1

Evaluate each exponential

Solution:

$$
\begin{array}{lll}
32^{1 / 5} & =\sqrt[5]{32} & =2 \\
64^{1 / 2} & =\sqrt[2]{64} & =\sqrt{64}=8 \\
-81^{1 / 4} & =-\sqrt[4]{81} & =-3 \\
(-81)^{1 / 4} & =\sqrt[4]{-81} & \begin{array}{l}
\text { Is not a real number because the radicand } \\
-81, \text { is negative and the index, } 4, \text { is even. }
\end{array} \\
(-64)^{1 / 3} & =\sqrt[3]{-64} & =-4 \\
\left(\frac{1}{27}\right)^{1 / 3} & =\sqrt[3]{\frac{1}{27}} & =\frac{1}{3}
\end{array}
$$

Define and use expressions of the form $a^{m / n}$.
\square
$a^{m / n}$
If m and n are positive integers with m / n in lowest terms, then
$\boldsymbol{a}^{m / n}=\left(\boldsymbol{a}^{1 / n}\right)^{m}$,
provided that $a^{1 / n}$ is a real number. If $a^{1 / n}$ is not a real number, then $\mathrm{a}^{m / n}$ is not a real number

Define and use expressions of the form $\mathbf{a}^{m / n}$.
If $a^{m / n}$ is a real number, then $a^{-m / n}=\frac{1}{a^{m / n}} \quad(a \neq 0)$.

CLASSROOM
EXAMPLE 3 Evaluating Exponentials with Negative Rational Exponents
Evaluate each exponential.
Solution:

$$
\begin{aligned}
& 81^{-3 / 4}=\frac{1}{81^{3 / 4}}=\frac{1}{\left(81^{1 / 4}\right)^{3}}=\frac{1}{(\sqrt[4]{81})^{3}}=\frac{1}{3^{3}}=\frac{1}{27} \\
& 36^{-3 / 2}=\frac{1}{36^{3 / 2}}=\frac{1}{\left(36^{1 / 2}\right)^{3}}=\frac{1}{(\sqrt{36})^{3}}=\frac{1}{6^{3}}=\frac{1}{216} \\
& \left(\frac{64}{25}\right)^{-3 / 2}=\left(\frac{25}{64}\right)^{3 / 2}=\left(\sqrt{\frac{25}{64}}\right)^{3}=\left(\frac{5}{8}\right)^{3}=\frac{125}{512}
\end{aligned}
$$

Define and use expressions of the form $a^{m / n}$.

$\boldsymbol{a}^{m / n}$
If all indicated roots are real numbers, then
$\boldsymbol{a}^{m / n}=\left(\boldsymbol{a}^{1 / n}\right)^{m}=\left(\boldsymbol{a}^{m}\right)^{1 / n}$.

Define and use expressions of the form $a^{m / n}$

Radical Form of $a^{m / n}$

If all indicated roots are real numbers, then

$$
a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

That is, raise a to the m th power and then take the nth root, or take the nth root of a and then raise to the m th power.

CLASSROOM
Write each exponential as a radical. Assume that all variables,
represent positive real numbers.
Solution:
$19^{1 / 2} \quad=(\sqrt[2]{19})^{1}=\sqrt{19}$
$11^{3 / 4}=(\sqrt[4]{11})^{3}$
$14 x^{2 / 3}=14(\sqrt[3]{x})^{2}$
$5 x^{3 / 5}-(2 x)^{3 / 5}=5(\sqrt[5]{x})^{3}-(\sqrt[5]{2 x})^{3}$
$x^{-5 / 7} \quad=\frac{1}{x^{5 / 7}}=\frac{1}{(\sqrt[7]{x})^{5}}$
$\left(x^{2}+y^{2}\right)^{1 / 3}=\sqrt[3]{x^{2}+y^{2}}$
Slide 8.2-10

Use the rules for exponents with rational exponents.

Rules for Rational Exponents

Let r and s be rational numbers. For all real numbers a and b for which the indicated expressions exist,

$$
\begin{aligned}
& a^{r} \cdot a^{s}=a^{r+s} \quad a^{-r}=\frac{1}{a^{r}} \quad \frac{a^{r}}{b^{s}}=a^{r-s} \\
& \left(a^{r}\right)^{s}=a^{r s} \quad(a b)^{r}=a^{r} b^{r} \\
& \left(\frac{a}{b}\right)^{r}=\frac{a^{r}}{b^{r}} \quad\left(\frac{a}{b}\right)^{-r}=\frac{b^{r}}{a^{r}} \quad a^{-r}=\left(\frac{1}{a}\right)^{r}
\end{aligned}
$$

CLASSROOM
 EXAMPLE 5

Write with only positive exponents. Assume that all variables represent positive real numbers

Solution:

$$
\begin{aligned}
3^{1 / 2} \cdot 3^{1 / 3} & =3^{1 / 2+1 / 3}=3^{3 / 6+2 / 6}=3^{5 / 6} \\
\frac{7^{2 / 3}}{7^{4 / 3}} & =7^{2 / 3-4 / 3}=7^{-2 / 3}=\frac{1}{7^{2 / 3}} \\
\left(\frac{a^{1 / 3} b^{2 / 3}}{b}\right)^{6} & =\left(a^{1 / 3} b^{2 / 3-1}\right)^{6} \quad=\left(a^{1 / 3} b^{-1 / 3}\right)^{6}=\left(a^{1 / 3}\right)^{6}\left(b^{-1 / 3}\right)^{6} \\
& =a^{(1 / 3) 6} b^{(-1 / 3) 6}=a^{6 / 3} b^{-6 / 3}=a^{2} b^{-2}=\frac{a^{2}}{b^{2}}
\end{aligned}
$$

CLASSROOM
 EXAMPLE 5
 Applying Rules for Rational Exponents (cont'd)

Write with only positive exponents. Assume that all variables represent positive real numbers.
Solution:

$$
r^{2 / 5}\left(r^{3 / 5}+r^{8 / 5}\right) \quad=r^{2 / 5} \cdot r^{3 / 5}+r^{2 / 5} \cdot r^{8 / 5}
$$

$$
=r^{2 / 5+3 / 5}+r^{2 / 5+8 / 5}=r^{5 / 5}+r^{10 / 5}=r+r^{2}
$$

$$
\begin{aligned}
& \left(\frac{a^{3} b^{-4}}{a^{-2} b^{1 / 5}}\right)^{-1 / 2}=\left(a^{3-(-2)} b^{-4-1 / 5}\right)^{-1 / 2}=\left(a^{5} b^{-21 / 5}\right)^{-1 / 2} \\
& =\left(a^{5}\right)^{-1 / 2}\left(b^{-21 / 5}\right)^{-1 / 2}=a^{-5 / 2} b^{21 / 10}=\frac{b^{21 / 10}}{a^{5 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { CLASSROOM } \\
& \text { EXAMPLE } 6
\end{aligned} \text { Applying Rules for Rational Exponents }
$$

8.3 Simplifying Radical Expressions

Objectives
1 Use the product rule for radicals.
2 Use the quotient rule for radicals.

3 Simplify radicals.
4 Simplify products and quotients of radicals with different indexes.
5 Use the Pythagorean theorem.
6 Use the distance formula.

Use the product rule for radicals.

Product Rule for Radicals

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and n is a natural number, then $\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}$.

That is, the product of two nth roots is the nth root of the product.

CLASSROOM Using the Product Rule

Multiply. Assume that all variables represent positive real numbers.
Solution:
$\sqrt{5} \cdot \sqrt{13}=\sqrt{5 \cdot 13}=\sqrt{65}$
$\sqrt{7} \cdot \sqrt{x y}=\sqrt{7 x y}$

CLASSROOM Using the Product Rule
 EXAMPLE 2

Multiply. Assume that all variables represent positive real numbers
Solution:

$$
\begin{array}{ll}
\sqrt[3]{2} \cdot \sqrt[3]{7} & =\sqrt[3]{2 \cdot 7} \quad=\sqrt[3]{14} \\
\sqrt[6]{8 r^{2}} \cdot \sqrt[6]{2 r^{3}} & =\sqrt[6]{16 r^{5}} \\
\sqrt[5]{9 y^{2} x} \cdot \sqrt[5]{8 x y^{2}} & =\sqrt[5]{72 y^{4} x^{2}} \\
\sqrt{7} \cdot \sqrt[3]{5} & \begin{array}{l}
\text { This expression cannot be simplified by using } \\
\text { the product rule. }
\end{array}
\end{array}
$$

Use the quotient rule for radicals.

Quotient Rule for Radicals

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, $b \neq 0$, and n is a natural number,
then

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
$$

That is, the nth root of a quotient is the quotient of the nth roots

CLASSROOM
EXAMPLE 3
Using the Quotient Rule
Simplify. Assume that all variables represent positive real numbers
Solution:

$$
\begin{array}{ll}
\sqrt{\frac{100}{81}}=\frac{10}{9} & \sqrt{\frac{11}{25}}=\frac{\sqrt{11}}{5} \\
\sqrt[3]{\frac{18}{125}}=\frac{\sqrt[3]{18}}{\sqrt[3]{125}}=\frac{\sqrt[3]{18}}{5} & \sqrt{\frac{y^{8}}{16}}=\frac{\sqrt{y^{8}}}{\sqrt{16}}=\frac{y^{4}}{4} \\
-\sqrt[3]{\frac{x^{2}}{r^{12}}}=-\frac{\sqrt[3]{x^{2}}}{\sqrt[3]{r^{12}}}=-\frac{\sqrt[3]{x^{2}}}{r^{4}}
\end{array}
$$

CLASSROOM EXAMPLE 4	Simplitying Roots of Numbers
Simplify.	
Solution:	
$\sqrt{32}=\sqrt{1}$	准 $=\sqrt{16} \cdot \sqrt{2}=4 \sqrt{2}$
$\sqrt{300}=\sqrt{1}$	-0.3 $=\sqrt{100} \cdot \sqrt{3}=10 \sqrt{3}$
$\sqrt{35}$ Canno	be simplified further.
$\sqrt[3]{54}=\sqrt[3]{27}$	(2) $=\sqrt[3]{27} \cdot \sqrt[3]{2}=3 \sqrt[3]{2}$
$\sqrt[4]{243}=\sqrt[4]{3}$	$\cdot 3=3 \sqrt[4]{3}$

Simplify radicals.

Conditions for a Simplified Radical

1. The radicand has no factor raised to a power greater than or equal to the index.
2. The radicand has no fractions.
3. No denominator contains a radical.
4. Exponents in the radicand and the index of the radical have greatest common factor 1.

Be careful with which factors belong outside the radical sign and which belong inside.

\section*{| CLASSROOM | |
| :---: | :--- |
| EXAMPLE 6 | Simplifying Radicals by Using Smaller Indexes |
 Simplify. Assume that all variables represent positive real numbers.}

Solution:

$$
\begin{aligned}
& \sqrt[12]{2^{3}}=\left(2^{3}\right)^{1 / 2}=2^{1 / 4}=\sqrt[4]{2} \\
& \sqrt[6]{t^{2}}=\left(t^{2}\right)^{1 / 6}=(t)^{1 / 3}=\sqrt[3]{t}
\end{aligned}
$$

Simplify radicals.

CLASSROOM EXAMPLE 7

Simplify.

Solution:
$\sqrt{5} \cdot \sqrt[3]{4}$

$$
\begin{aligned}
& \text { The indexes, } 2 \text { and } 3 \text {, have a least common index of } \\
& \text { 6, use rational exponents to write each radical as a } \\
& \text { sixth root. } \\
& =5^{1 / 2}=5^{3 / 6}=\sqrt[6]{5^{3}}=\sqrt[6]{125} \\
& =4^{1 / 3}=4^{2 / 6}=\sqrt[6]{4^{2}}=\sqrt[6]{16} \\
& \sqrt{5} \cdot \sqrt[3]{4}=\sqrt[6]{125} \cdot \sqrt[6]{16}=\sqrt[6]{2000}
\end{aligned}
$$

Use the Pythagorean theorem.

Pythagorean Theorem

If c is the length of the longest side of a right triangle and a and b are lengths of the shorter sides, then

The longest side is the hypotenuse, and the two shorter sides are the legs, of the triangle. The hypotenuse is the side opposite the right angle.

CLASSROOM Using the Pythagorean Theorem

Find the length of the unknown side of the triangle.
Solution:
$c^{2}=a^{2}+b^{2}$
$c^{2}=14^{2}+8^{2}$
$c^{2}=196+64$
$c^{2}=260$
$c=\sqrt{260}$
$c=\sqrt{4 \cdot 65}$
$c=\sqrt{4} \cdot \sqrt{65}$
$c=2 \sqrt{65} \quad$ The length of the hypotenuse is $2 \sqrt{65}$.

Slide 8.3-14

$$
\begin{aligned}
& \begin{array}{l}
\text { CLASSROOM } \\
\text { EXAMPLE } 8
\end{array} \\
& \text { Find the length of the unknown side of the triangle. } \\
& \text { Solution: } \\
& \begin{array}{l}
c^{2}=a^{2}+b^{2} \\
6^{2}=4^{2}+b^{2} \\
36=16+b^{2} \\
20=b^{2} \\
\qquad \sqrt{20}=b \\
\sqrt{4 \cdot 5}=b \\
\sqrt{4} \cdot \sqrt{5}=b \\
2 \sqrt{5}=b
\end{array}
\end{aligned}
$$

Use the distance formula

Distance Formula
The distance between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

```
\begin{tabular}{l|l} 
CLASSROOM \\
EXAMPLE 9 & Using the Distance Formula
\end{tabular}
Find the distance between each pair of points
(2, -1) and (5, 3)
Solution:
Designate which points are \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\).
\(\left(x_{1}, y_{1}\right)=(2,-1)\) and \(\left(x_{2}, y_{2}\right)=(5,3)\)
\(d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
\(d=\sqrt{(5-2)^{2}+(3-(-1))^{2}}\)
\(d=\sqrt{(3)^{2}+(4)^{2}}\)
\(d=\sqrt{9+16}\)
\(d=\sqrt{25}=5\)
```

\section*{| CLASSROOM | |
| :--- | :--- |
| EXAMPLE 9 | Using the Distance Formula (cont'd) |}

Find the distance between each pairs of points
$(-3,2)$ and $(0,-4)$

Solution

Designate which points are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
$\left(x_{1}, y_{1}\right)=(-3,2)$ and $\left(x_{2}, y_{2}\right)=(0,-4)$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{2}\right)^{2}}$
$d=\sqrt{(0-(-3))^{2}+(-4-2)^{2}}$
$d=\sqrt{(3)^{2}+(-6)^{2}}$
$d=\sqrt{9+36}$
$d=\sqrt{45}=3 \sqrt{5}$

8.4 Adding and Subtracting Radical Expressions

Objective
1 Simplify radical expressions involving addition and subtraction.

Simplify radical expressions involving addition and subtraction.

Only radical expressions with the same index and the same radicand may be combined. Expressions such as $3 \sqrt{3}+2 \sqrt[3]{3}$ or $5 \sqrt{3}+2 \sqrt{2}$ cannot be simplified by combining terms.

CLASSROOM	
EXAMPLE 1	Adding and Subtracting Radicals (cont'd)

Add or subtract to simplify each radical expression.
Solution:
$5 \sqrt{12 y}+6 \sqrt{75 y}, y \geq 0=5 \sqrt{4} \cdot \sqrt{3 y}+6 \sqrt{25} \cdot \sqrt{3 y}$

$$
=5 \cdot 2 \sqrt{3 y}+6 \cdot 5 \sqrt{3 y}
$$

$$
=10 \sqrt{3 y}+30 \sqrt{3 y}
$$

$$
=(10+30) \sqrt{3 y}
$$

$$
=40 \sqrt{3 y}
$$

$$
9 \sqrt{5}-4 \sqrt{10} \quad \begin{aligned}
& \text { This expression can not be } \\
& \text { simplified any further. }
\end{aligned}
$$

Simplify radical expressions involving addition and subtraction.

CLASSROOM EXAMPLE 2

Adding and Subtracting Radicals with Higher Indexes
Add or subtract to simplify the radical expression. Assume that all variables represent positive real numbers

$$
\begin{aligned}
-2 \sqrt[4]{32}-7 \sqrt[4]{162} & =-2 \sqrt[4]{16 \cdot 2}-7 \sqrt[4]{81 \cdot 2} \\
& =-2 \cdot 2 \sqrt[4]{2}-7 \cdot 3 \sqrt[4]{2} \\
& =-4 \sqrt[4]{2}-21 \sqrt[4]{2} \\
& =-25 \sqrt[4]{2}
\end{aligned}
$$

$$
\text { since } \sqrt{9+16}=\sqrt{25}=5 \text {, but } \sqrt{9}+\sqrt{16}=3+4=7 \text {. }
$$

CLASSROOM
EXAMPLE 2
Adding and Subtracting Radicals with Higher Indexes (cont'd)
CLASSROOM
EXAMPLE 2
Add or subtract to simplify the radical expression. Assume that all variables represent positive real numbers.

Add or subtract to simplify the radical expression. Assume that all variables represent positive real numbers.

Solution:

$$
\begin{aligned}
6 \sqrt[3]{16 z^{7}}+4 \sqrt{200 z^{5}} & =6 \sqrt[3]{8 z^{6} \cdot 2 z}+4 \sqrt{100 z^{4} \cdot 2 z} \\
& =6 \sqrt[3]{8 z^{6}} \cdot \sqrt[3]{2 z}+4 \sqrt{100 z^{4}} \cdot \sqrt{2 z} \\
& =6 \cdot 2 z^{2} \sqrt[3]{2 z}+4 \cdot 10 z^{2} \sqrt{2 z} \\
& =12 z^{2} \sqrt[3]{2 z}+40 z^{2} \sqrt{2 z}
\end{aligned}
$$ positive real numbers.

$$
2 \sqrt{\frac{32}{36}}+2 \frac{\sqrt{27}}{\sqrt{108}}
$$

$$
\begin{aligned}
& \text { Solution: } \\
& =2 \frac{\sqrt{16 \cdot 2}}{\sqrt{36}}+2 \frac{\sqrt{9 \cdot 3}}{\sqrt{36 \cdot 3}} \\
& =2\left(\frac{4 \sqrt{2}}{6}\right)+2\left(\frac{3 \sqrt{3}}{6 \sqrt{3}}\right) \\
& =\frac{4 \sqrt{2}}{3}+\frac{3}{3}=\frac{4 \sqrt{2}+3}{3}
\end{aligned}
$$

$$
\sqrt{\frac{80}{y^{4}}}+\sqrt{\frac{81}{y^{10}}}
$$

$$
\begin{aligned}
& \text { Solution: } \\
& =\frac{\sqrt{16 \cdot 5}}{\sqrt{y^{4}}}+\frac{\sqrt{81}}{\sqrt{y^{10}}} \\
& =\frac{4 \sqrt{5}}{y^{2}}+\frac{9}{y^{5}} \\
& =\frac{4 y^{3} \sqrt{5}}{y^{5}}+\frac{9}{y^{5}}=\frac{4 y^{3} \sqrt{5}+9}{y^{5}}
\end{aligned}
$$

8.5 Multiplying and Dividing Radical Expressions

Objectives
1 Multiply radical expressions.
2 Rationalize denominators with one radical term.
3 Rationalize denominators with binomials involving radicals.
4 Write radical quotients in lowest terms.

Multiply radical expressions.

We multiply binomial expressions involving radicals by using the FOIL method from Section 5.4. Recall that this method refers to multiplying the First terms, Outer terms, Inner terms, and Last terms of the binomials.

CLASSROOM
EXAMPLE 1
Multiplying Binomials Involving Radical Expressions
Multiply, using the FOIL method.

$$
\begin{array}{ll}
\text { Solution: } \\
\begin{array}{ll}
(2+\sqrt{3})(1+\sqrt{5}) & =2+2 \sqrt{5}+1 \sqrt{3}+\sqrt{15} \\
(4+\sqrt{5})(4-\sqrt{5}) & =16-4 \sqrt{5}+4 \sqrt{5}-5=11 \\
& \text { This is a difference of squares. } \\
& =(\sqrt{13}-2)(\sqrt{13}-2) \\
(\sqrt{13}-2)^{2} & =13-2 \sqrt{13}-2 \sqrt{13}+4 \\
& =17-4 \sqrt{13}
\end{array}
\end{array}
$$

Rationalize denominators with one radical

Rationalizing the Denominator

A common way of "standardizing" the form of a radical expression is to have the denominator contain no radicals. The process of removing radicals from a denominator so that the denominator contains only rational numbers is called rationalizing the denominator. This is done by multiplying y a form of 1 .

Solution:

$\frac{5}{\sqrt{11}} \quad$| Multiply the numerator and denominator by the |
| :--- |
| denominator. This is in effect multiplying by 1. |

$$
\begin{aligned}
& =\frac{5 \cdot \sqrt{11}}{\sqrt{11} \cdot \sqrt{11}}=\frac{5 \sqrt{11}}{11} \\
\frac{5 \sqrt{6}}{\sqrt{5}} & =\frac{5 \sqrt{6} \cdot \sqrt{5}}{\sqrt{5} \cdot \sqrt{5}} \quad=\frac{5 \sqrt{30}}{5}=\sqrt{30}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 2
\end{array} \\
& \text { Rationalize the denominator. } \\
& \text { Solution: } \\
& \begin{aligned}
& \frac{-8}{\sqrt{18}}=\frac{-8 \cdot \sqrt{18}}{\sqrt{18} \cdot \sqrt{18}}=\frac{-8 \sqrt{18}}{18} \\
&=\frac{-8 \sqrt{9 \cdot 2}}{18} \\
&=\frac{-24 \sqrt{2}}{18} \\
&=\frac{-4 \sqrt{2}}{3} \\
& \text { Raviting Denominators with Square Roots (cont'd) } \\
& \text { Slide 8.5-7 }
\end{aligned} \\
&
\end{aligned}
$$

CLASSROOM	
EXAMPLE 3	Rationalizing Denominators in Roots of Fractions

Simplify the radical.
Solution:

$$
\begin{aligned}
-\sqrt{\frac{8}{45}} & =-\frac{\sqrt{8}}{\sqrt{45}} \quad=-\frac{2 \sqrt{10}}{3 \cdot 5} \quad \text { Product Rule } \\
& =-\frac{\sqrt{4 \cdot 2}}{\sqrt{9 \cdot 5}} \quad \text { Factor. } \quad=-\frac{2 \sqrt{10}}{15} \\
& =-\frac{2 \sqrt{2}}{3 \sqrt{5}} \quad \text { Product Rule } \\
& =-\frac{2 \sqrt{2} \cdot \sqrt{5}}{3 \sqrt{5} \cdot \sqrt{5}} \text { Multiply by radical in denominator. }
\end{aligned}
$$

CLASSROOM

Rationalizing Denominators in Roots of Fractions (cont'd)
EXAMPLE 3
Simplify the radical.
Solution:

$$
\begin{aligned}
\sqrt{\frac{200 k^{6}}{y^{7}}, y>0} & =\frac{\sqrt{200 k^{6}}}{\sqrt{y^{7}}} \\
& =-\frac{\sqrt{100 \cdot 2 \cdot\left(k^{3}\right)^{2}}}{\sqrt{y^{6} \cdot y}}=\frac{10 k^{3} \sqrt{2} \cdot \sqrt{y}}{y^{3} \sqrt{y} \cdot \sqrt{y}} \\
& =\frac{10 k^{3} \sqrt{2 y}}{y^{4}} \\
y^{3} \sqrt{y} &
\end{aligned}
$$

Rationalize denominators with binomials involving radicals.

Rationalizing a Binomial Denominator
Whenever a radical expression has a sum or difference with square
root radicals in the denominator, rationalize the denominator by
multiplying both the numerator and denominator by the conjugate of
the denominator.

CLASSROOM	
EXAMPLE 5	Rationalizing Binomial Denominators

Rationalize the denominator.
Solution:

$$
\begin{aligned}
\frac{4}{2-\sqrt{3}} & =\frac{4(2+\sqrt{3})}{2-\sqrt{3}(2+\sqrt{3})} \\
& =\frac{4(2+\sqrt{3})}{4-3} \\
& =\frac{4(2+\sqrt{3})}{1} \\
& =4(2+\sqrt{3}), \text { or } 8+4 \sqrt{3}
\end{aligned}
$$

CLASSROOM EXAMPLE 5 Rationalizing Binomial Denominators (cont'd)

 EXAMPLE 5Rationalizing Binomial Denominators (cont'd)

$$
\begin{aligned}
& =\frac{7(\sqrt{2}-\sqrt{13})}{(\sqrt{2}+\sqrt{13})(\sqrt{2}-\sqrt{13})} \\
& =\frac{7(\sqrt{2}-\sqrt{13})}{2-13} \\
& =\frac{7(\sqrt{2}-\sqrt{13})}{-11} \\
& =\frac{-7(\sqrt{2}-\sqrt{13})}{11}
\end{aligned}
$$

Rationalize the denominator.
Solution:

$$
\frac{\sqrt{3}+\sqrt{5}}{\sqrt{2}-\sqrt{7}} \quad=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{2}-\sqrt{7}} \cdot \frac{\sqrt{2}+\sqrt{7}}{\sqrt{2}+\sqrt{7}}
$$

Rationalize the denominator.
Solution:
$\sum_{\substack{\sqrt{k}+\sqrt{z} \\ k \neq z, k>0, z>0}}^{2}=\frac{2(\sqrt{k}-\sqrt{z})}{(\sqrt{k}+\sqrt{z})(\sqrt{k}-\sqrt{z})}$

$$
=\frac{\sqrt{6}+\sqrt{21}+\sqrt{10}+\sqrt{35}}{2-7}
$$

$$
=\frac{\sqrt{6}+\sqrt{21}+\sqrt{10}+\sqrt{35}}{-5}
$$

$$
=\frac{2(\sqrt{k}-\sqrt{z})}{k-z}
$$

$$
=\frac{-(\sqrt{6}+\sqrt{21}+\sqrt{10}+\sqrt{35})}{5}
$$

CLASSROOM EXAMPLE 6

Writing Radical Quotients in Lowest Terms (cont'd)
Write the quotient in lowest terms.
Solution:

$$
\begin{aligned}
& \frac{2 x+\sqrt{32 x^{2}}}{6 x}, x>0=\frac{2 x+4 x \sqrt{2}}{6 x} \quad \text { Product rule } \\
&=\frac{2 x(1+2 \sqrt{2})}{6 x} \\
&=\frac{2 x(1+2 \sqrt{2})}{2 \cdot 3 x} \\
& \begin{array}{l}
\text { Fivide out common the numerator. } \\
\text { factors. }
\end{array} \\
&=\frac{1+2 \sqrt{2}}{3}
\end{aligned}
$$

8.6 Solving Equations with Radicals

Objectives
1 Solve radical equations by using the power rule.
2 Solve radical equations that require additional steps.

3 Solve radical equations with indexes greater than 2.
4 Use the power rule to solve a formula for a specified variable.

Solve radical equations by using the power rule.
Power Rule for Solving an Equation with Radicals
If both sides of an equation are raised to the same power, all solutions of the original equation are also solutions of the new equation.

The power rule does not say that all solutions of the new equation are solutions of the original equation. They may or may not be. Solutions that do not satisfy the original equation are called extraneous solutions. They must be rejected.

When the power rule is used to solve an equation, every solution of the new equation must be checked in the original equation.

CLASSROOM
EXAMPLE 1

Using the Power Rule
Solve $\sqrt{5 x+1}=4$.

Solution:
Check:

$$
\begin{array}{rlrl}
(\sqrt{5 x+1})^{2} & =4^{2} & \sqrt{5 x+1} & =4 \\
5 x+1 & =16 & \sqrt{5 \cdot 3+1} & =4 \\
5 x & =15 & \sqrt{16} & =4 \\
x & =3 & 4 & =4
\end{array}
$$

Since 3 satisfies the original equation, the solution set is $\{3\}$.

Solve radical equations by using the power rule.

Solving an Equation with Radicals

Step 1 Isolate the radical. Make sure that one radical term is alone on one side of the equation.

Step 2 Apply the power rule. Raise each side of the equation to a power that is the same as the index of the radical.

Step 3 Solve the resulting equation; if it still contains a radical, repeat Steps 1 and 2.

Step 4 Check all proposed solutions in the original equation.

```
CLASSROOM Using the Power Rule
Solve }\sqrt{}{5x+3}+2=0
Solution:
\(\sqrt{5 x+3}=-2\)
```


Objective 2

Solve radical equations that require additional steps.

CLASSROOM EXAMPLE 3
Solve $\sqrt{5-x}=x+1$

Solution:
Step 1 The radical is alone on the left side of the equation.
Step 2 Square both sides.

$$
\begin{aligned}
(\sqrt{5-x})^{2} & =(x+1)^{2} \\
5-x & =x^{2}+2 x+1
\end{aligned}
$$

Step 3 The new equation is quadratic, so get 0 on one side.

$$
\begin{gathered}
0=x^{2}+3 x-4 \\
0=(x+4)(x-1) \\
x+4=0 \\
\text { or } \quad x-1=0 \\
x=-4 \quad \\
\text { or } \quad x=1
\end{gathered}
$$

\section*{| CLASSROOM | |
| :--- | :--- |
| EXAMPLE 4 | Using the Power Rule (Squaring a Binomial) (cont'd) |
 Step 4 Check each proposed solution in the original equation.}

$$
\begin{array}{c|c}
x=0 & \text { or } \\
\sqrt{1-2 x-x^{2}}=x+1 & \sqrt{1-2 x-x^{2}}=x+1 \\
\sqrt{1-2(0)-0^{2}}=0+1 & \sqrt{1-2(-2)-(-2)^{2}}=-2+1 \\
\sqrt{1}=1 & \sqrt{1} \neq-1 \\
1=1 & \text { False }
\end{array}
$$

The solution set of the original equation is $\{0\}$.

$$
\begin{aligned}
& \begin{array}{c|l}
\text { CLASSROOM } \\
\text { EXAMPLE } 5 & \text { Using the Power Rule (Squaring Twice) (cont'd) }
\end{array} \\
& x^{2}+2 x+1=4(x+1) \\
& x^{2}+2 x+1=4 x+4 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& x-3=0 \text { or } x+1=0 \\
& x=3 \quad \text { or } \quad x=-1 \\
& \text { Check: } \mathrm{x}=3 \\
& \sqrt{2(3)+3}+\sqrt{3+1}=1 \\
& \sqrt{6+3}+\sqrt{4}=1 \\
& \sqrt{9}+\sqrt{4}=1 \\
& 3+2=1 \\
& 5 \neq 1 \\
& \begin{array}{rlr}
\text { Check: } \mathbf{x = - 1} & \quad \text { False } \\
\sqrt{2(-1)+3}+\sqrt{-1+1} & =1 & \\
\sqrt{1}+\sqrt{0} & =1 & \text { The solution set is }\{-1\} . \\
\text { True } \quad 1 & =1 &
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 6
\end{array} \\
\text { Solve } \sqrt[3]{2 x+7}=\sqrt[3]{3 x-2}
\end{gathered}
$$

Using the Power Rule for a Power Greater Than 2
Solution:

$$
\begin{array}{rlrl}
(\sqrt[3]{2 x+7})^{3} & =(\sqrt[3]{3 x-2})^{3} \quad \text { Cube both sides. } \\
2 x+7 & =3 x-2 \\
9 & =x \\
\text { Check: } \quad \begin{array}{rlr}
\sqrt[3]{2(9)+7} & =\sqrt[3]{3(9)-2} \\
\sqrt[3]{18+7} & =\sqrt[3]{27-2} \\
\sqrt[3]{25} & =\sqrt[3]{25} \quad \text { True } \quad \text { The solution set is }\{9\} . \\
&
\end{array} \quad .
\end{array}
$$

Objective 4

Use the power rule to solve a formula for a specified variable.

8.7 Complex Numbers

Objectives
1 Simplify numbers of the form $\sqrt{-b}$, where $b>0$.
2 Recognize subsets of the complex numbers.

3 Add and subtract complex numbers.
4 Multiply complex numbers.
5 Divide complex numbers.
6 Find powers of i.

Simplify numbers of the form $\sqrt{-b}$, where $\boldsymbol{b}>\boldsymbol{0}$.
Imaginary Unit \boldsymbol{i}
The imaginary unit i is defined as

$$
i=\sqrt{-1}, \quad \text { where } \quad i^{2}=-1 .
$$

That is, i is the principal square root of -1.

maginary Unit i

CLASSROOM Simplifying Square Roots of Negative Numbers EXAMPLE 1

Write each number as a product of a real number and i.

Solution:

$\sqrt{-25}=i \sqrt{25}=5 i$
$-\sqrt{-81}=-i \sqrt{81}=-9 i$
$\sqrt{-7} \quad=i \sqrt{7}$
$\sqrt{-44} \quad=i \sqrt{44} \quad=i \sqrt{4 \cdot 11} \quad=2 i \sqrt{11}$
It is easy to mislake $\sqrt{2} i$ for $\sqrt{2 i}$ with the i under the radical. For this reason,
we usually write $\sqrt{2} i$ as $i \sqrt{2}$, as in the definition of $\sqrt{-b}$

CLASSROOM	Multiplying Square Roots of Negative Numbers		
Multiply. $\sqrt{-16} \cdot \sqrt{-25}$	Solution: $=i \sqrt{16} \cdot i \sqrt{25}$	$\sqrt{-8} \cdot \sqrt{-6}$	$=i \sqrt{8} \cdot i \sqrt{6}$
	$=i \cdot 4 \cdot i \cdot 5$		$=i^{2} \sqrt{8 \cdot 6}$
	$=20 i^{2}$		$=i^{2} \sqrt{48}$
	$=20(-1)$		$=i^{2} \sqrt{16 \cdot 3}$
	$=-20$		$=-4 \sqrt{3}$
$\sqrt{-6} \cdot \sqrt{-5}$	$=i \sqrt{6} \cdot i \sqrt{5}$	$\sqrt{-5} \cdot \sqrt{7}$	$=i \sqrt{5} \cdot \sqrt{7}$
	$=i^{2} \sqrt{6 \cdot 5}$		$=i \sqrt{35}$
	$=(-1) \sqrt{30}$		
	$=-\sqrt{30}$		

Recognize subsets of the complex numbers.

For a complex number $a+b i$, if $b=0$, then $a+b i=a$, which is a real number. In which case \boldsymbol{a} is real part and \boldsymbol{b} is imaginary part.

Thus, the set of real numbers is a subset of the set of complex numbers.

If $a=0$ and $b \neq 0$, the complex number is said to be a pure imaginary number.

For example, $3 i$ is a pure imaginary number. A number such as $7+2 i$ is a nonreal complex number.

A complex number written in the form $a+b i$ is in standard form.

Recognize subsets of the complex numbers.

The relationships among the various sets of numbers

$$
\begin{aligned}
& \text { CLASSROOM } \\
& \text { Adding Complex Numbers } \\
& \text { Add. } \\
& \text { Solution: } \\
& (-1-8 i)+(9-3 i)=(-1+9)+(-8-3) i \\
& =8-11 i \\
& (-3+2 i)+(1-3 i)+(-7-5 i) \\
& =[-3+1+(-7)]+[2+(-3)+(-5)] i \\
& =-9-6 i
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 5
\end{array} \\
& \text { Subtract. }
\end{aligned} \text { Subtracting Complex Numbers } .
$$

CLASSROOM	Multiplying Complex Numbers	
Multiply.		
	Solution:	
$6 i(4+3 i)$	$=6 i(4)+6 i(3 i)$	
	$=24 i+18 i^{2}$	
	$=24 i+18(-1)$	
	$=-18+24 i$	

CLASSROOM EXAMPLE 6 Multiply.	Multiplying Complex Numbers (cont'd)
	Solution:
$(3+2 i)(3+4 i)$ $=\underbrace{3(3)}_{\text {Fisst }}+\underbrace{3(4 i)}_{\text {Outer }}+\underbrace{(2 i)(3)}_{\text {Inner }}+\underbrace{(2 i)(4 i)}_{\text {Last }}$ $=9+12 i+6 i+8 i^{2}$ $=9+18 i+8(-1)$ $=9+18 i-8$ $=1+18 i$	

Multiply complex numbers.

The product of a complex number and its conjugate is always a real number.

$$
(a+b i)(a-b i)=a^{2}-b^{2}(-1)
$$

$$
=a^{2}+b^{2}
$$

$$
\begin{aligned}
\begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 7
\end{array} & \text { Dividing Complex Numbers } \\
\begin{array}{l}
\text { Find the quotient. } \\
\text { Solution: } \\
23-i
\end{array} & =\frac{(23-i)(3+i)}{(3-i)(3+i)} \\
& =\frac{69+23 i-3 i+1}{3^{2}+1} \\
& =\frac{70+20 i}{10} \\
& =\frac{10(7+2 i)}{10}=7+2 i
\end{aligned}
$$

Find powers of i.

Because $i^{2}=-1$, we can find greater powers of i, as shown below.
CLASSROOM
EXAMPLE 8
Find each power of i.
Solution:
$i^{3}=i \cdot i^{2}=i \cdot(-1)=-i$
$i^{4}=i^{2} \cdot i^{2}=(-1) \cdot(-1)=1$
$i^{28}=\left(i^{4}\right)^{7}=1^{7}=1$
$i^{19}=i^{16} \cdot i^{3}=\left(i^{4}\right)^{4} \cdot i^{3} \quad=1^{4} \cdot(-i)=-i$
$i^{-9}=\frac{1}{i^{9}} \quad=\frac{1}{i^{8} \cdot i} \quad=\frac{1}{\left(i^{4}\right)^{2} \cdot i}=\frac{1}{1^{2} \cdot i}=\frac{1}{i}$
$=\frac{1(-i)}{i \cdot(-i)}=\frac{-i}{-i^{2}} \quad=\frac{-i}{-(-1)} \quad=\frac{-i}{1}=-i$
$i^{-22}=\frac{1}{i^{22}} \quad=\frac{1}{i^{20} \cdot i^{2}}=\frac{1}{\left(i^{4}\right)^{5} \cdot(-1)}=\frac{1}{1^{5} \cdot(-1)}=\frac{1}{-1}=-1$

$$
\begin{aligned}
& \begin{array}{c|c}
\text { CLASSROOMM } \\
\text { EXAMPLE } 7 & \text { Dividing Complex Numbers (cont'd) }
\end{array} \\
& \text { EXAMPLE } 7 \\
& \text { Find the quotient. } \\
& \frac{5-i}{i}=\frac{(5-i)(-i)}{i(-i)} \\
& =\frac{-5 i+i^{2}}{-i^{2}} \\
& =\frac{-5 i+(-1)}{-(-1)} \\
& =\frac{-5 i-1}{1} \quad=-1-5 i
\end{aligned}
$$

