

CLASSROOM EXAMPLE 1		Simplifying Higher Roots	
Simplify. Solution:			
∛27	= 3	, because $3^3 = 27$	
∛√216	= 6	b, because $6^3 = 216$	
∜256	= 4	, because $4^4 = 256$	
∜243	= 3	, because $3^5 = 243$	
$\sqrt[4]{\frac{16}{81}}$	$=\frac{2}{3}$	$\left(\frac{2}{3}\right)^4 = \frac{16}{81}$	
∛0.064	= 0	0.4, because $0.4^3 = 0.064$	
Convright @ 2012_2008	2004 Pea	rson Education Inc	Slide 8.1-4

CLASSRO	ОМ 5	Simplifying Higher Roots by Using Absolute Va	lue
Simplify each Solution:	h roo	t.	
$\sqrt[4]{(-5)^4}$	= -	-5 = 5	
$\sqrt[5]{(-5)^5}$	= -	$-5 n ext{ is odd}$	
$-\sqrt[6]{(-3)^6}$	= -	- -3 = -3	
$-\sqrt[4]{m^8}$	= -	$-m^2$ <i>n</i> is even	
$\sqrt[3]{x^{24}}$	= x	t ⁸	
$\sqrt[6]{y^{18}}$	= 1	$\overline{(y^3)^6} = y^3 $	
Copyright © 2012, 2008	2004 Peau	rson Education Inc. Slide	8.1-15

CLASSR EXAMPI	OOM LE 1	Evalu	uating Exponentials of the Form a ^{1/n}
Evaluate each exponenti		ponenti	ial.
Solution:			
32 ^{1/5}	= \$/	32	= 2
64 ^{1/2}	$=\sqrt[2]{}$	64	$=\sqrt{64}$ = 8
$-81^{1/4}$	=	∜81	= -3
$(-81)^{1/4}$	= 4	-81	Is not a real number because the radicand, -81, is negative and the index, 4, is even.
$(-64)^{1/3}$	= $\sqrt[3]{}$	-64	= -4
$\left(\frac{1}{27}\right)^{\!\!1/3}$	$=\sqrt[3]{3}$	$\frac{1}{27}$	$=\frac{1}{3}$
			0114-00-0

CLASSROOM EXAMPLE 5

 Applying Rules for Rational Exponents

 Write with only positive exponents. Assume that all variables represent positive real numbers.

 Solution:

$$3^{1/2} \cdot 3^{1/3}$$
 $= 3^{1/2+1/3} = 3^{3/6+2/6} = 3^{5/6}$
 $7^{2/3}$
 $= 7^{2/3-4/3} = 7^{-2/3} = \frac{1}{7^{2/3}}$
 $\left(\frac{a^{1/3}b^{2/3}}{b}\right)^6$
 $= (a^{1/3}b^{2/3-1})^6$
 $= (a^{1/3}b^{-1/3})^6 = (a^{1/3})^6 (b^{-1/3})^6$
 $= a^{(1/3)6}b^{(-1/3)6}$
 $= a^{6/3}b^{-6/3} = a^2b^{-2} = \frac{a^2}{b^2}$

 Side 8.2: 13

CLASSROOM
 Applying Rules for Rational Exponents (cont'd)

 Write with only positive exponents. Assume that all variables represent positive real numbers.

 Solution:

$$\left(\frac{a^3b^{-4}}{a^{-2}b^{1/5}}\right)^{-1/2} = \left(a^{3-(-2)}b^{-4-1/5}\right)^{-1/2} = \left(a^5b^{-21/5}\right)^{-1/2}$$
 $= \left(a^5\right)^{-1/2} \left(b^{-21/5}\right)^{-1/2} = a^{-5/2}b^{21/10} = \frac{b^{21/10}}{a^{5/2}}$
 $r^{2/5}\left(r^{3/5}+r^{8/5}\right) = r^{2/5} \cdot r^{3/5}+r^{2/5} \cdot r^{8/5}$
 $= r^{2/5+3/5}+r^{2/5+8/5} = r^{5/5}+r^{10/5}=r+r^2$

 Slide 82-14

CLASSROOM
EXAMPLE 6Applying Rules for Rational ExponentsWrite all radicals as exponentials, and then apply the rules for rational
exponents. Leave answers in exponential form. Assume that all
variables represent positive real numbers.Solution:
$$\sqrt[4]{x^3} \cdot \sqrt[5]{x} = x^{3/4} \cdot x^{1/5} = x^{3/4+1/5} = x^{15/20+4/20} = x^{19/20}$$
 $\sqrt[4]{x^5} \sqrt[5]{x} = x^{5/2}$ $\sqrt{x^5} \sqrt[3]{x} = x^{5/2}$ $\sqrt[3]{x}$ $\sqrt[3]{$

CLASSROOM EXAMPLE 4	Simplifying Roots of Numbers	
Simplify.		
Solution:		
$\sqrt{32} = \sqrt{16}$	$\overline{5\cdot 2} = \sqrt{16} \cdot \sqrt{2} = 4\sqrt{2}$	
$\sqrt{300} = \sqrt{10}$	$\overline{00\cdot 3} = \sqrt{100} \cdot \sqrt{3} = 10\sqrt{3}$	
$\sqrt{35}$ Cannot	be simplified further.	
$\sqrt[3]{54} = \sqrt[3]{2}$	$7 \cdot 2 = \sqrt[3]{27} \cdot \sqrt[3]{2} = 3\sqrt[3]{2}$	
$\sqrt[4]{243} = \sqrt[4]{3^4}$	$\cdot 3 = 3\sqrt[4]{3}$	
Convright © 2012, 2008, 2004, Pea	rson Education. Inc.	Slide 8.3-

CLASSROOM
EXAMPLE 2
 Adding and Subtracting Radicals with Higher Indexes (cont'd)

 Add or subtract to simplify the radical expression. Assume that all variables represent positive real numbers.

 Solution:

$$\sqrt[3]{p^4q^7} - \sqrt[3]{64pq}$$
 $= \sqrt[3]{p^3q^6 \cdot pq} - \sqrt[3]{64 \cdot pq}$
 $= pq^2\sqrt[3]{pq} - 4\sqrt[3]{pq}$
 $= (pq^2 - 4)\sqrt[3]{pq}$

CLASSROOM
EXAMPLE 2Adding and Subtracting Radicals with Higher Indexes (cont'd)Add or subtract to simplify the radical expression. Assume that all
variables represent positive real numbers.Solution:
$$6\sqrt[3]{16z^7} + 4\sqrt{200z^5} = 6\sqrt[3]{8z^6 \cdot 2z} + 4\sqrt{100z^4 \cdot 2z}$$

 $= 6\sqrt[3]{8z^6} \cdot \sqrt[3]{2z} + 4\sqrt{100z^4} \cdot \sqrt{2z}$
 $= 6\cdot 2z^2\sqrt[3]{2z} + 4\cdot 10z^2\sqrt{2z}$
 $= 12z^2\sqrt[3]{2z} + 40z^2\sqrt{2z}$ Convict 0.202 2008 2004 Perrors Education for

CLASSROOM EXAMPLE 1	Multiplying Binomials Involving Radical Expressions
Multiply, using the	e FOIL method.
Solution:	FOIL
$\left(2+\sqrt{3}\right)\left(1+\sqrt{3}\right)$	$\overline{5}) = 2 + 2\sqrt{5} + 1\sqrt{3} + \sqrt{15}$
$\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)$	$(5) = 16 - 4\sqrt{5} + 4\sqrt{5} - 5 = 11$ This is a difference of squares.
$\left(\sqrt{13}-2\right)^2$	$= (\sqrt{13} - 2)(\sqrt{13} - 2)$ $= 13 - 2\sqrt{13} - 2\sqrt{13} + 4$
Convright © 2012, 2008, 2004, Pea	$= 17 - 4\sqrt{13}$

CLASSROOM EXAMPLE 1	Multiplying Binomials Involving Radical Expressions (cont'd)
Multiply, using the	FOIL method.
Solution:	
$(4+\sqrt[3]{7})(4-\sqrt[3]{4})$	$(7) = 16 - 4\sqrt[3]{7} + 4\sqrt[3]{7} - \sqrt[3]{7^2}$
	$=16-\sqrt[3]{49}$
$\left(\sqrt{r}+\sqrt{s}\right)\left(\sqrt{r}\right)$	$-\sqrt{s}$ = $\left(\sqrt{r}\right)^2 - \left(\sqrt{s}\right)^2$
$r \ge 0$ and $s \ge 0$	=r-s
	Difference of squares

CLASSROOM EXAMPLE 5	Rationalizing Binomial Denominators (cont'd)	
Rationalize the de	enominator.	
Solution:		
$\frac{7}{\sqrt{2}+\sqrt{13}}$	$=\frac{7(\sqrt{2}-\sqrt{13})}{(\sqrt{2}+\sqrt{13})(\sqrt{2}-\sqrt{13})}$	
	$=\frac{7(\sqrt{2}-\sqrt{13})}{2-13}$	
	$=\frac{7\left(\sqrt{2}-\sqrt{13}\right)}{-11}$	
	$=\frac{-7\left(\sqrt{2}-\sqrt{13}\right)}{11}$	
Convright © 2012, 2008, 2004, Pes	arson Education. Inc. Slide 8.5	- 14

CLASSROOM EXAMPLE 1	Using the	Power Rule	
Solve $\sqrt{5x+1} = 4$.			
Solution:		Check:	
$\left(\sqrt{5x+1}\right)$	$)^2 = 4^2$	$\sqrt{5x+1} = 4$	
5 <i>x</i> +	-1 = 16	$\sqrt{5 \cdot 3 + 1} = 4$	
5	x = 15	$\sqrt{16} = 4$	
	<i>x</i> = 3	4 = 4	
		True	
Since 3 satisfies	the original	equation, the solution set is {3}.	
Copyright © 2012, 2008, 2004, Pea	rson Education_Inc		Slide 8.6-

 CLASSROOM

 EXAMPLE 3

 Using the Power Rule (Squaring a Binomial)

 Solve $\sqrt{5-x} = x+1$.

 Solution:

 Step 1 The radical is alone on the left side of the equation.

 Step 2 Square both sides.

 $\left(\sqrt{5-x}\right)^2 = (x+1)^2$
 $5-x = x^2 + 2x + 1$

 Step 3 The new equation is quadratic, so get 0 on one side.

 $0 = x^2 + 3x - 4$

 0 = (x+4)(x-1)

 x + 4 = 0 or x - 1 = 0

 x = -4 or x = 1

CLASSROOM EXAMPLE 4	Using the Pow	ver Rule (Squaring a Binomia	l)
Solve $\sqrt{1-2x}$	$\overline{-x^2} = x+1.$		
Solution:			
Step 1 The radica	al is alone on the	left side of the equation.	
Step 2 Square bo	oth sides. $(v$	$\sqrt{1-2x-x^2}$) ² = (x+1) ²	
		$1 - 2x - x^2 = x^2 + 2x + 3x^2 + 3x$	l
Step 3 The new e	equation is quadr	atic, so get 0 on one side.	
	0 = 2	$x^{2} + 4x$	
	0 = 2	x(x+2)	
	2x = 0 or	x + 2 = 0	
	x = 0 or	x = -2	
Convright © 2012, 2008, 2004, Pea	rson Education Inc		Slide 8.6

CLASSROOM EXAMPLE 5	¹ Usi	ng the Power	Rule (Squaring Twice) (cont'd)	
$x^2 + 2x$	+1 = 4	(x+1)	Check: x = 3	
$x^2 + 2x - 2$	+1 = 4	x+4	$\sqrt{2(3)+3} + \sqrt{3+1} = 1$	
$x^2 - 2x -$	-3 = 0		$\sqrt{6+3} + \sqrt{4} = 1$	
(x-3)(x+	1) = 0		$\sqrt{9} + \sqrt{4} = 1$	
x - 3 = 0	or	x + 1 = 0	3 + 2 = 1	
<i>x</i> = 3	or	x = -1	$5 \neq 1$	
Check: x = -	1		False	
$\sqrt{2(-1)+3}$	$\sqrt{3} + \sqrt{-3}$	1 + 1 = 1		
	$\sqrt{1}$ +	$\sqrt{0} = 1$	The solution set is {-1}.	
	True	1 = 1		
Copyright @ 2012, 2008, 2004	Pearson Educ	ation. Inc.	Slide 8.6- 12	

Objective 4 Use the power rule to solve a formula for a specified variable.

CLASSROOM EXAMPLE 1 Simplifying Square Roots of Negative Numbers					lumbers	
Write each num		er as a product of a real number and <i>i</i> .				
	Solu	tion:				
√-25	$=i\gamma$	25	= 5 <i>i</i>			
-\sqrt{-81}	=-i	√81	= -9 <i>i</i>			
$\sqrt{-7}$	=i	7				
$\sqrt{-44}$	$=i_{N}$	44	$=i\sqrt{4\cdot 11}$	$=2i\sqrt{11}$		
Copyright © 2012, 200	08 2004 Pea	rson Education	Inc		Slide 8.7- 4	

CLASSROOM EXAMPLE 2	Multiplying Squa	Multiplying Square Roots of Negative Numbers				
Multiply.	Solution:					
$\sqrt{-16} \cdot \sqrt{-25}$	$=i\sqrt{16}\cdot i\sqrt{25}$	$\sqrt{-8} \cdot \sqrt{-6}$	$=i\sqrt{8}\cdot i\sqrt{6}$			
	$= i \cdot 4 \cdot i \cdot 5$		$=i^2\sqrt{8\cdot 6}$			
	$= 20i^{2}$		$=i^2\sqrt{48}$			
	= 20(-1)		$=i^2\sqrt{16\cdot 3}$			
	= -20		$= -4\sqrt{3}$			
$\sqrt{-6} \cdot \sqrt{-5}$	$=i\sqrt{6}\cdot i\sqrt{5}$	$\sqrt{-5} \cdot \sqrt{7}$	$=i\sqrt{5}\cdot\sqrt{7}$			
	$=i^2\sqrt{6\cdot 5}$		$=i\sqrt{35}$			
	$=(-1)\sqrt{30}$					
	$=-\sqrt{30}$		Clide 8 7			

CLASSROOM EXAMPLE 3	Dividing Square Roots of Negative Numbers
Divide.	
Solu	ition:
$\frac{\sqrt{-80}}{\sqrt{-5}} = \frac{i}{4}$	$\frac{\sqrt{80}}{i\sqrt{5}} \qquad \qquad \frac{\sqrt{-40}}{\sqrt{10}} = \frac{i\sqrt{40}}{\sqrt{10}}$ $\frac{\sqrt{80}}{5} = i\sqrt{\frac{40}{10}}$
= ~	$\sqrt{16}$ = $i\sqrt{4}$
= 4	=2i
Curreich © 2012 2008 2004 Ber	Siide 8.7 -

CLASSROOM EXAMPLE 4	Adding Complex Numbers
Add.	
	Solution:
(-1-8i)+(9)	(-3i) = (-1+9) + (-8-3)i
	= 8 - 11i
(-3+2i)+(1)	(-3i) + (-7 - 5i)
	= [-3+1+(-7)] + [2+(-3)+(-5)]i
	= -9 - 6i

CLASSROOM EXAMPLE 5	Subtracting Complex Numbers
Subtract.	
	Solution:
(-1+2i)-(4i)	(+i) = (-1-4) + (2-1)i = -5+i
(8-5i)-(12)	-3i) = (8-12) + [-5 - (-3)]i
	=(8-12)+(-5+3)i
	= -4 - 2i
(-10+6i)-((-10+10i) = [-10-(-10)]+(6-10)i
	=0-4i $=-4i$
	0114-07-40

CLASSROOM EXAMPLE 6	Multiplying Complex Numbers	
Multiply.		
	Solution:	
6i(4+3i)	=6i(4)+6i(3i)	
	$= 24i + 18i^2$	
	= 24i + 18(-1)	
	= -18 + 24i	
	Diversion In-	Slide 8.7- 11

CLASSROOM EXAMPLE 6	Multiplying Complex Numbers (cont'd)
Multiply.	
	Solution:
(3+2i)(3+4i)	$\underbrace{3(3)}_{First} + \underbrace{3(4i)}_{Outer} + \underbrace{(2i)(3)}_{Inner} + \underbrace{(2i)(4i)}_{Last}$
	$=9+12i+6i+8i^{2}$
	=9+18i+8(-1)
	= 9 + 18i - 8
	=1+18i
onuriaht © 2012-2008-2004 Boo	Slide 8.7-

CLASSROOM EXAMPLE 7	Dividing Complex Numbers	
Find the quotient.		
Solution:		
23 - i	$-\frac{(23-i)(3+i)}{(23-i)(3+i)}$	
$\overline{3-i}$	(3-i)(3+i)	
	69 + 23i - 3i + 1	
	$=\frac{3^2+1}{3^2+1}$	
	70 + 20i	
	$=\frac{10}{10}$	
	$=\frac{10(7+2i)}{10} = 7+2i$	
Conversion © 2012 2008 2004 Page	rson Education. Inc.	Slide 8.7- 15

CLASSROOM EXAMPLE 7	Dividing Comple	x Numbers (cont'd)		
Find the quotient.				
Solution:				
$\frac{5-i}{i}$ =	$\frac{(5-i)(-i)}{i(-i)}$			
=	$=\frac{-5i+i^2}{-i^2}$			
=	$\frac{-5i+(-1)}{-(-1)}$			
=	$\frac{-5i-1}{1}$	= -1 - 5i	Siide 87.46	

Find powers of <i>i.</i>	
Because $l^2 = -1$, we can find greater powers of <i>i</i> , as shown	below.
$i^{\beta} = i \cdot i^{2} = i \cdot (-1) = -i$	
$\vec{r} = \vec{r} \cdot \vec{r} = (-1) \cdot (-1) = 1$	
$i^{\delta} = i \cdot i^{*} = i \cdot 1 = i$	
$\hat{P} = \hat{P} \cdot \hat{P} = (-1) \cdot (1) = -1$	
$i^{7} = i^{3} \cdot i^{4} = (-i) \cdot (1) = -i$	
$i^8 = i^4 \cdot i^4 = 1 \cdot 1 = 1$	
Convright © 2012, 2008, 2004. Pearson Education. Inc.	Slide 8.7- 17

	CLASSROOM EXAMPLE 8		Simplifying	Powers of <i>i</i>		
	Find each power of <i>i</i> . Solution:					
	i ²⁸	$=\left(i^{4}\right)^{7}$	$=1^{7}=1$			
	i ¹⁹	$= i^{16} \cdot i^3$	$= \left(i^4\right)^4 \cdot i^3$	$= 1^4 \cdot (-i) =$	-i	
	i ⁻⁹	$=\frac{1}{i^9}$	$=\frac{1}{i^8\cdot i}$	$=\frac{1}{\left(i^4\right)^2\cdot i}$	$=\frac{1}{1^2 \cdot i}$	$=\frac{1}{i}$
		$=\frac{1(-i)}{i\cdot(-i)}$	$=\frac{-i}{-i^2}$	$=\frac{-i}{-(-1)}$	$=\frac{-i}{1}=$	—i
	<i>i</i> ⁻²²	$=\frac{1}{i^{22}}$	$=\frac{1}{i^{20}\cdot i^2}=$	$\frac{1}{\left(i^4\right)^5 \cdot (-1)} =$	$\frac{1}{1^5 \cdot (-1)} =$	$=\frac{1}{-1}=-1$
C	opvright © (2012. 2008. 2004 Pear	son Education. Inc.			Slide 8.7- 18