9.2 The Quadratic Formula

Objectives
1 Derive the quadratic formula.
2 Solve quadratic equations by using the quadratic formula.
3 Use the discriminant to determine the number and type of solutions.

Derive the quadratic formula

Solve $a x^{2}+b x+c=0$ by completing the square (assuming $a>0$).

$$
\begin{aligned}
a x^{2}+b x+c & =0 & \left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}}{4 a^{2}}+\frac{-c}{a} \\
x^{2}+\frac{b}{a} x+\frac{c}{a} & =0 & \left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}}{4 a^{2}}+\frac{-4 a c}{4 a^{2}} \\
x^{2}+\frac{b}{a} x & =-\frac{c}{a} & \left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}-4 a c}{4 a^{2}} \\
{\left[\frac{1}{2}\left(\frac{b}{a}\right)\right]^{2} } & =\left(\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}} & x+\frac{b}{2 a} & =\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}} & =-\frac{c}{a}+\frac{b^{2}}{4 a^{2}} & \text { or } x+\frac{b}{2 a} & =-\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}
\end{aligned}
$$

Derive the quadratic formula.

Quadratic Formula

The solutions of the equation $a x^{2}+b x+c=0(a \neq 0)$ are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Solution:

$$
\begin{aligned}
& a=4, b=-11 \text { and } c=-3 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-11) \pm \sqrt{(-11)^{2}-4(4)(-3)}}{2(4)} \\
& x=\frac{11 \pm \sqrt{121+48}}{8} \\
& x=\frac{11 \pm \sqrt{169}}{8} \\
& \text { The solution set is }\left\{-\frac{1}{4}, 3\right\} \text {. } \\
& x=\frac{11+13}{8} \\
& =\frac{24}{8}=3 \\
& x=\frac{11-13}{8} \\
& =\frac{-2}{8}=-\frac{1}{4}
\end{aligned}
$$

CLASSROOM	Using the Quadratic Formula (Nonreal Complex Solutions)
EXAMPLE 3	

EXAMPLE 3

Solve $(x+5)(x+1)=10 x$.

$$
\begin{array}{ll}
\text { Solution: } & x=\frac{4 \pm \sqrt{16-20}}{4} \\
\begin{array}{ll}
x^{2}+6 x+5=10 x & x=\frac{4 \pm \sqrt{-4}}{2} \\
x^{2}-4 x+5=0 & x=\frac{4 \pm 2 i}{2} \\
a=1, b=-4 \text { and } c=5 & x=\frac{2(2 \pm i)}{2} \\
x=\frac{-b \pm \sqrt{(b)^{2}-4(a)(c)}}{2(a)} & x=2 \pm i
\end{array}
\end{array}
$$

Use the discriminant to determine the number and type of solutions.

Discriminant

The discriminant of $a x^{2}+b x+c=0$ is $\boldsymbol{b}^{2}-4 a c$. If a, b, and c are integers, then the number and type of solutions are determined as follows

Discriminant	Number and Type of Solutions
Positive, and the square of an integer	Two rational solutions
Positive, but not the square of an integer	Two irrational solutions
Zero	One rational solution
Negative	Two nonreal complex solutions

CLASSROOM Using the Discriminant

Find the discriminant. Use it to predict the number and type of
solutions for each equation. Tell whether the equation can be solved
by factoring or whether the quadratic formula should be used.
$10 x^{2}-x-2=0$
Solution:
$a=10, b=-1, c=-2$
$b^{2}-4 a c=(-1)^{2}-4(10)(-2)$

$$
=1+80
$$

$$
=81
$$

There will be two rational solutions, and the equation can be solved by factoring.

