

М	METHODS FOR SOLVING QUADRATIC EQUATIONS				
Method	Advantages	Disadvantages			
Factoring	This is usually the fastest method.	Not all polynomials are factorable; some factorable polynomials are difficult to factor.			
Square root property	This is the simplest method for solving equations of the form $(ax+b)^2 = c$.	Few equations are given in this form.			
Completing the square	This method can always be used, although most people prefer the quadratic formula.	It requires more steps than other methods.			
Quadratic formula	This method can always be used.	It is more difficult than factoring because of the square root, although calculators can simplify its use.			

Objective 1 Solve an equation with fractions by writing it in quadratic form.

EXAMPLE 2	Solving	a Motion Pro	oblem		
n 1 ¾ hr Cody rows his boat 5 mi upriver and comes back. The rate of the current is 3 mph. How fast does Cody row?					
olution:					
Step 1 Read the	problem c	carefully.			
ton 2 Accian +	ha variahl	a lot y - the	anood Cody	1000	row
S tep 2 Assign t Make a ta	he variabl able. Use t d	e. Let $x =$ the $t = d/r$.	speed Cody	y can	row.
Step 2 Assign t Make a ta Upstream	he variabl able. Use <i>t</i> <i>d</i> 5	$\frac{1}{r}$	$\frac{t}{\frac{5}{x-3}}$	y can	row.

CLASSROOM EXAMPLE 2	Solving a Motion Problem (cont'd)	
20	$x + 60 + 20x - 60 = 7(x^2 - 9)$	
	$40x = 7x^2 - 63$	
	$0 = 7x^2 - 40x - 63$	
	0 = (7x+9)(x-7)	
	7x + 9 or $x - 7$	
	$x = -\frac{9}{7} \text{or} x = 7$	
Step 5 State the rows at th	answer. The speed cannot be negative, so Code e speed of 7mph.	ý
Step 6 Check that	at this value satisfies the original problem.	
Copyright @ 2012_2008_2004_Pea	rson Education. Inc	Slide 9.3-

e probler the varia	a banquet. One chef cc e than the other. Togethe uld it take the faster che m carefully. able. Let x = the slow ch thef's time alone.	build prepare the er, they complete the if working alone? Mef's time alone. Then,
e probler the vari a he fast c	m carefully. able. Let <i>x</i> = the slow ch thef's time alone.	nef's time alone. Then,
e probler the vari a he fast c	m carefully. able. Let <i>x</i> = the slow ch thef's time alone.	nef's time alone. Then,
the vari a he fast c	able. Let <i>x</i> = the slow chhef's time alone.	nef's time alone. Then,
Rate	Time working	Fractional Part
	Together	of the Job Done
$\frac{1}{x}$	5	$\frac{5}{x}$
$\frac{1}{x-2}$	5	$\frac{5}{x-2}$
	$\frac{\frac{1}{x}}{\frac{1}{x-2}}$	Together $\frac{1}{x}$ 5 $\frac{1}{x-2}$ 5

CLASSROOM EXAMPLE 3	Solving a Work Problem (cont'd)				
Step 3 Write an equation. Since together they complete 1 job,					
	$\frac{5}{x} + \frac{5}{x-2} = 1.$				
Step 4 Solve the	equation. Multiply each side by the LCD, $x(x-2)$).			
$x(x-2)\left(\frac{5}{x}\right) + x(x-2)\left(\frac{5}{x-2}\right) = x(x-2)(1)$					
	5(x-2) + 5x = x(x-2)				
	$5x - 10 + 5x = x^2 - 2x$				
	$0 = x^2 - 12x + 10$				
Copyright © 2012, 2008, 2004 Pea	rson Education. Inc.	Slide 9.3- 12			

CLASSROOM EXAMPLE 6	Solving Eq	quations that Are Quadratic in Form (cont'd)	
To find x, substitu	ite x ² for y.		
x	$a^{2} = 4$ = +2	or $x^2 = \frac{1}{9}$ or $x = \pm \frac{1}{7}$	
Check 144-14	18 + 4 = 0	$\frac{1}{9} - \frac{37}{9} + 4 = 0$	
	0 = 0	0 = 0	
	True	True	
The solution set is	$ s \left\{ \pm \frac{1}{3}, \pm 2 \right\} $	2}.	
Copyright © 2012, 2008, 2004, Pea	rson Education_Inc	Slide 9.	.3- 22

	CLASSROOM EXAMPLE 6	Solving Equation	s that Are Quadratic in Fo	orm (cont'd)		
	To find x, substitute x^2 for y.					
		$x^2 =$	$2\pm\sqrt{2}$			
		x =	$\pm\sqrt{2\pm\sqrt{2}}$			
	Check		- • • -			
	$(2+\sqrt{2})^2 - 4(2+\sqrt{2}) = -2 (2-\sqrt{2})^2 - 4(2-\sqrt{2}) = -2$					
	$4 + 4\sqrt{2} + 2 - 8 - 4\sqrt{2} = -2$ $4 - 4\sqrt{2} + 2 - 8 + 4\sqrt{2} = -2$					
	Tr	-2 = -2	True	-2 = -2		
	The solution set is $\left\{\pm\sqrt{2+\sqrt{2}},\pm\sqrt{2-\sqrt{2}}\right\}$.					
с	opyright © 2012, 2008, 2004 Pea	rson Education. Inc.		Slide 9.3- 24		

CLASSROOM
EXAMPLE 7Solving Equations That Are Quadratic in FormSolve. $5(x+3)^2 + 9(x+3) = 2$ Solution:Let y = x + 3, so the equation becomes: $5y^2 - 9y = 2$ (5y-1)(y+2) = 05y - 1 = 0 or y + 2 = 0 $y = \frac{1}{5}$ or y = -2Silve 9.3/2001 Percent Education for

CLASSROOM EXAMPLE 7	Solving E	Equations Th	at Are Quadratic in Form (c	ont'd)
To find x, substitu	ite x + 3 fo	r <i>y</i> .		
<i>x</i> +	$3 = \frac{1}{5}$	or	x + 3 = -2	
<i>x</i> =	$=-\frac{14}{5}$	or	x = -5	
Check $\frac{1}{5}$	$+\frac{9}{5}=2$		20 - 18 = 2	
	2 = 2		Z = Z	
	True		True	
The solution set i	s {-5,-	$\left\{\frac{14}{5}\right\}$.		
Commight @ 2012 2008 2004 Res	mon Education Inc			Slide 9.3- 27

CLASSROOM EXAMPLE 7	Solving Equations That Are Quadratic in For	m (cont'd)					
Solve.	Solve.						
$4x^{2/3} = 3x^{1/3} + $	$4x^{2/3} = 3x^{1/3} + 1$						
Solution:							
Let $y = x^{1/3}$, so y^2	$=(x^{1/3})^2 = x^{2/3}.$						
	$4y^2 = 3y + 1$						
	$4y^2 - 3y - 1 = 0$						
	(4y+1) = 0 or $(y-1) = 0$						
	4y + 1 = 0 or $y - 1 = 0$						
	$y = -\frac{1}{4}$ or $y = 1$						
Convright @ 2012 2008 2004 Pea	arson Education. Inc	Slide 9.3- 28					

