9.3 Equations Quadratic in Form

Objectives
1 Solve an equation with fractions by writing it in quadratic form
2 Use quadratic equations to solve applied problems.
3 Solve an equation with radicals by writing it in quadratic form.
4 Solve an equation that is quadratic in form by substitution.

Equations Quadratic in Form

METHODS FOR SOLVING QUADRATIC EQUATIONS		
Method	Advantages	Disadvantages
Factoring	This is usually the fastest method.	Not all polynomials are factorable; some factorable polynomials are difficult to factor.
Square root property	This is the simplest method for solving equations of the form $(a x+b)^{2}=c$.	Few equations are given in this form.
Completing the square	This method can always be used, although most people prefer the quadratic formula.	It requires more steps than other methods.
Quadratic formula	This method can always be used.	It is more difficult than factoring because of the square root, although calculators can simplify its use.
(1) Slide 9.3-2		

$\begin{array}{ll}\text { CLASSROOM } \\ \text { EXAMPLE } 1 & \text { Solving an Equation with Fractions that Leads to a Quadratic Equatio }\end{array}$
Solve $\frac{4}{x-1}+9=-\frac{7}{x}$.
Solution:
Multiply by the LCD, $x(x-1)$.

$$
\begin{aligned}
x(x-1)\left(\frac{4}{x-1}+9\right) & =x(x-1)\left(-\frac{7}{x}\right) \\
4 x+9 x(x-1) & =-7(x-1) \\
4 x+9 x^{2}-9 x & =-7 x+7 \\
9 x^{2}+2 x-7 & =0
\end{aligned}
$$

$$
\begin{aligned}
& 9 x^{2}+2 x-7=0 \\
& (9 x-7)(x+1)=0 \\
& 9 x-7=0 \quad \text { or } \\
& \begin{array}{c}
x=\frac{7}{9} \quad \text { or }
\end{array} \quad x+1=0 \\
&
\end{aligned}
$$

The solution set is $\left\{-1, \frac{7}{9}\right\}$.

| $\begin{array}{l}\text { CLASSROOM } \\ \text { EXAMPLE } 2\end{array}$ Solving a Motion Problem (cont'd) |
| :--- | :--- |

Step 3 Write an equation. The time going upriver added to the time going downriver is $1 \frac{3}{4}$ or $\frac{7}{4} \mathrm{hr}$.

$$
\frac{5}{x-3}+\frac{5}{x+3}=\frac{7}{4}
$$

Step 4 Solve the equation. Multiply each side by the LCD,

$$
4(x-3)(x+3)
$$

$$
4(x-3)(x+3) \frac{5}{x-3}+4(x-3)(x+3) \frac{5}{x+3}=4(x-3)(x+3)\left(\frac{7}{4}\right)
$$

$$
20(x+3)+20(x-3)=7(x-3)(x+3)
$$

Slide 9.3-8

$$
\begin{aligned}
& \begin{aligned}
\text { CLASSROOM } \\
\text { EXAMPLE } 2
\end{aligned} \text { Solving a Motion Problem (cont'd) } \\
& \qquad \begin{aligned}
20 x+60+20 x-60 & =7\left(x^{2}-9\right) \\
40 x & =7 x^{2}-63 \\
0 & =7 x^{2}-40 x-63 \\
0 & =(7 x+9)(x-7) \\
7 x+9 & \text { or } x-7 \\
x=-\frac{9}{7} & \text { or } x=7
\end{aligned}
\end{aligned}
$$

Step 5 State the answer. The speed cannot be negative, so Cody rows at the speed of 7 mph .

Step 6 Check that this value satisfies the original problem.

Use quadratic equations to solve applied problems.

PROBLEM-SOLVING HINT
Recall from Section 7.5 that a person's work rate is $\frac{1}{t}$ part of the job per hour, where t is the time in hours required to do the complete job. Thus, the part of the job the person will do in x hours is $\frac{1}{t} x$

CLASSROOM EXAMPLE 3		Solving a Work Problem	
Two chefs are preparing a banquet. One chef could prepare the banquet in 2 hr less time than the other. Together, they complete the job in 5 hr . How long would it take the faster chef working alone?			
Solution:			
Step 1 Read the problem carefully.			
Step 2 Assign the variable. Let $x=$ the slow chef's time alone. Then, $x-2=$ the fast chef's time alone.			
	Rate	Time working Together	Fractional Part of the Job Done
Slow	$\frac{1}{x}$	5	$\frac{5}{x}$
Fast	$\frac{1}{x-2}$	5	$\frac{5}{x-2}$

CLASSROOM EXAMPLE 3 Solving a Work Problem (cont'd)

Step 3 Write an equation. Since together they complete 1 job,

$$
\frac{5}{x}+\frac{5}{x-2}=1
$$

Step 4 Solve the equation. Multiply each side by the LCD, $x(x-2)$.

$$
\begin{aligned}
x(x-2)\left(\frac{5}{x}\right)+x(x-2)\left(\frac{5}{x-2}\right) & =x(x-2)(1) \\
5(x-2)+5 x & =x(x-2) \\
5 x-10+5 x & =x^{2}-2 x \\
0 & =x^{2}-12 x+10
\end{aligned}
$$

$$
\begin{aligned}
& \substack{\text { CLASSROOM } \\
\text { EXAMPLE } 3} \\
& \text { Here } a=1, b=-12 \text {, and } c=10 \text {. } \\
& x=\frac{-(-12) \pm \sqrt{(-12)^{2}-4(1)(10)}}{2(1)} \text { Use the quadratic formula. } \\
& x=\frac{12 \pm \sqrt{144-40}}{2}=\frac{12 \pm \sqrt{104}}{2}=\frac{12 \pm 2 \sqrt{26}}{2} \\
& =\frac{2(6 \pm \sqrt{26})}{2}=6 \pm \sqrt{26}
\end{aligned}
$$

CLASSROOM EXAMPLE 3
 Solving a Work Problem (cont'd)

Step 5 State the answer. The slow chef's time cannot be 0.9 since the fast chef's time would then be $0.9-2$ or -1.1 . So the slow chef's time working alone is 11.1 hr and the fast chef's time working alone is $11.1-2=9.1 \mathrm{hr}$.

Step 6 Check that this value satisfies the original problem.

Objective 3

Solve an equation with radicals by writing it in quadratic form.

Solve $2 x=\sqrt{x}+1$.
Solution: $\quad 2 x-1=\sqrt{x}$

$$
\begin{array}{rl}
(2 x-1)^{2} & =(\sqrt{x})^{2} \\
4 x^{2}-4 x+1 & =x \\
4 x^{2}-5 x+1 & \text { Isolate. } \\
(4 x-1)(x-1) & =0 \\
4 x-1=0 \quad \text { Square. } \\
x=\frac{1}{4} \quad \text { or } & x-1=0 \\
x & x=1
\end{array}
$$

Objective 4

Solve an equation that is quadratic

 in form by substitution.| $\underset{\substack{\text { classroom } \\ \text { EXAMPLE 5 }}}{\text { Defining Substitution Variables }}$ | | |
| :---: | :---: | :---: |
| Define a variable u, and write each equation in the form $a u^{2}+b u+c=0$. | | |
| $2 x^{4}+5 x^{2}-12=0$
 Solution: | | $2(x+5)^{2}-7(x+5)+6=0$ |
| | | |
| Let $u=x^{2}$. | | Let $u=(x+5)$. |
| $2 u^{2}+5 u-1$ | | $2 u^{2}-7 u+6=0$ |

classroo EXAMPLE	Defining Substitution Variables (cont'd)
Define a varia $x^{\frac{4}{3}}-8 x^{\frac{2}{3}}+$ Solution: Let $u=x^{\frac{3}{3}}$ $u^{2}-8 u+16$	u, and write the equation in the form $5=0$

CLASSROOM	
EXAMPLE 6	Solving Equations that Are Quadratic in Form

$$
\text { Solve } 9 x^{4}-37 x^{2}+4=0 .
$$

Solution:

$$
\begin{aligned}
& \text { Let } y=x^{2}, \text { so } y^{2}=\left(x^{2}\right)^{2}=x^{4} \\
& \qquad \begin{array}{c}
9 y^{2}-37 y+4=0 \\
(y-4)(9 y-1)=0 \\
y-4=0
\end{array} \text { or } \quad 9 y-1=0 \\
& y=4 \text { or }
\end{aligned} \frac{y=\frac{1}{9}}{} .
$$

CLASSROOM

 EXAMPLE 6To find x, substitute x^{2} for y.

$$
\begin{array}{lll}
x^{2}=4 & \text { or } & x^{2}=\frac{1}{9} \\
x= \pm 2 & \text { or } & x= \pm \frac{1}{3}
\end{array}
$$

Check

\[\)| $144-148+4=0$ |
| ---: |

\]

$0=0$

True | $\frac{1}{9}-\frac{37}{9}+4=0$ |
| ---: |
| Theck |
| True |
| The solution set is $\left\{ \pm \frac{1}{3}, \pm 2\right\}$. |

CLASSROOM
 Solving Equations that Are Quadratic in Form (cont'd)
 EXAMPLE 6

Solve $x^{4}-4 x^{2}=-2$.
Solution:
$x^{4}-4 x^{2}+2=0$

$$
\begin{aligned}
& \text { Let } y=x^{2} \text {, so } y^{2}=\left(x^{2}\right)^{2}=x^{4} . \\
& \qquad \begin{array}{l}
y^{2}-4 y+2=0 \\
y=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(2)}}{2(1)}=-\mathbf{4}, \boldsymbol{c}=\mathbf{2} \\
= \\
=\frac{4 \pm 2 \sqrt{2}}{2}=\frac{2(2 \pm \sqrt{16-8}}{2}=\frac{4 \pm \sqrt{8}}{2} \\
2
\end{array}=2 \pm \sqrt{2}
\end{aligned}
$$

CLASSROOM
EXAMPLE 6
Solving Equations that Are Quadratic in Form (cont'd)
To find x, substitute x^{2} for y.

$$
\begin{aligned}
x^{2} & =2 \pm \sqrt{2} \\
x & = \pm \sqrt{2 \pm \sqrt{2}}
\end{aligned}
$$

Check

$$
\begin{aligned}
& (2+\sqrt{2})^{2}-4(2+\sqrt{2})=-2 \\
& 4+4 \sqrt{2}+2-8-4 \sqrt{2}=-2
\end{aligned} \begin{array}{r}
(2-\sqrt{2})^{2}-4(2-\sqrt{2})=-2 \\
\text { True } \quad-2=-2
\end{array} \begin{array}{r}
4-4 \sqrt{2}+2-8+4 \sqrt{2}=-2 \\
\text { True }-2=-2
\end{array}
$$

Solve an equation that is quadratic in form by substitution.

Solving an Equation That is Quadratic in Form by Substitution

Step 1 Define a temporary variable u, based on the relationship
between the variable expressions in the given equation.
Substitute u in the original equation and rewrite the equation in the form $a u^{2}+b u+c=0$

Step 2 Solve the quadratic equation obtained in Step 1 by factoring or the quadratic formula.

Step 3 Replace u with the expression it defined in Step 1.
Step 4 Solve the resulting equations for the original variable.
Step 5 Check all solutions by substituting them in the original equation.

CLASSROOM EXAMPLE 7

Solve.
$5(x+3)^{2}+9(x+3)=2$
Solution:
Let $y=x+3$, so the equation becomes:

$$
\begin{gathered}
5 y^{2}-9 y=2 \\
(5 y-1)(y+2)=0 \\
5 y-1=0 \quad \text { or } \\
y+2=0 \\
y=\frac{1}{5} \quad \text { or }
\end{gathered} \quad y=-28
$$

CLASSROOM	
EXAMPLE 7	Solving Equations That Are Quadratic in Form (cont'd)

To find x, substitute $x+3$ for y.

$$
\begin{array}{lll}
x+3=\frac{1}{5} & \text { or } & x+3=-2 \\
x=-\frac{14}{5} & \text { or } & x=-5
\end{array}
$$

Check

$$
\begin{array}{c|r}
\frac{1}{5}+\frac{9}{5}=2 & 20-18=2 \\
2=2 & 2=2 \\
\text { True } & \text { True }
\end{array}
$$

The solution set is $\left\{-5,-\frac{14}{5}\right\}$.

CLASSROOM EXAMPLE 7

To find x, substitute $x^{1 / 3}$ for y

$$
\begin{array}{rlrl}
x^{1 / 3} & =-\frac{1}{4} & \text { or } & x^{1 / 3}=1 \\
\left(x^{1 / 3}\right)^{3}=\left(-\frac{1}{4}\right)^{3} & \text { or } & \left(x^{1 / 3}\right)^{3}=(1)^{3} \\
x & =-\frac{1}{64} & \text { or } & x=1 \\
\frac{1}{4} & =-\frac{3}{4}+1 & & 4=3+1 \\
\frac{1}{4} & =\frac{1}{4} & & \\
2 & =2 \quad \text { True } & & \text { True } \\
& & & \text { The solution set is }\left\{-\frac{1}{64}, 1\right\} .
\end{array}
$$

CLASSROOM EXAMPLE 7

Solve.

$$
4 x^{2 / 3}=3 x^{1 / 3}+1
$$

Solution:

$$
\text { Let } y=x^{1 / 3} \text {, so } y^{2}=\left(x^{1 / 3}\right)^{2}=x^{2 / 3}
$$

$$
\begin{gathered}
4 y^{2}=3 y+1 \\
4 y^{2}-3 y-1=0 \\
(4 y+1)=0
\end{gathered} \quad \text { or } \quad(y-1)=0 .
$$

