9.4 Formulas and Further Applications

Objectives
1 Solve formulas for variables involving squares and square roots
2 Solve applied problems using the Pythagorean theorem.
3 Solve applied problems using area formulas.
4 Solve applied problems using quadratic functions as models.

Objective 1

Solve formulas for variables involving squares and square roots.

CLASSROOM	
EXAMPLE 1	Solving for Variables Involving Squares or Square Roots

Solve the formula for the given variable. Keep \pm in the answer.
Solve $A=\pi r^{2}$ for r.
Solution:

$$
\begin{array}{ll}
\frac{A}{\pi}=r^{2} & r= \pm \frac{\sqrt{A}}{\sqrt{\pi}} \cdot \frac{\sqrt{\pi}}{\sqrt{\pi}} \\
r= \pm \sqrt{\frac{A}{\pi}} & r= \pm \frac{\sqrt{A \pi}}{\pi}
\end{array}
$$

CLASSROOM EXAMPLE 1 Solving for Variables Involving Squares or Square Roots (cont'd)

Solve the formula for the given variable.
Solve $s=30 \sqrt{\frac{a}{p}}$ for a.

$$
\begin{aligned}
s^{2} & =900 \cdot \frac{a}{p} & & \text { Square both sides. } \\
p s^{2} & =900 a & & \text { Multiply by } p . \\
\frac{p s^{2}}{900} & =a & & \text { Divide by } 900 .
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { CLASSROOM } \\
\text { EXAMPLE } 2
\end{array} \\
& \text { Solving for a Variable That Appears in First- and Second-Degree Terms } \\
& \text { Solve } 2 t^{2}-5 t+k=0 \text { for } t \text {. } \\
& \text { Solution: } \\
& \text { Use } a=2, b=-5 \text {, and } c=k \text { in } \\
& \text { the quadratic formula. } \\
& t=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2) k}}{2(2)} \\
& t=\frac{5 \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \text { The solutions are } t=\frac{5+\sqrt{25-8 k}}{4} \\
& 4
\end{aligned} \text { and } t=\frac{5-\sqrt{25-8 k}}{4} .
$$

Objective 2

CLASSROOM	
EXAMPLE 3	Using the Pythagorean Theorem

A ladder is leaning against a house. The distance from the bottom of the ladder to the house is 5 ft . The distance from the top of ladder to the ground is 1 ft less than the length of the ladder. How long is ladder?

Solution:
Step 1 Read the problem carefully.

Step 2 Assign the variable.

Let $x=$ the length of the ladder. Then, $x-1=$ the distance from the top of the ladder to the ground.

CLASSROOM	
EXAMPLE 3	Using the Pythagorean Theorem (cont'd)

Step 3 Write an equation.

The wall of the house is perpendicular to the ground, so this is a right triangle. Use the Pythagorean formula.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
5^{2}+(x-1)^{2} & =x^{2}
\end{aligned}
$$

Step 4 Solve.

$$
\begin{aligned}
25+x^{2}-2 x+1 & =x^{2} \\
26 & =2 x \\
13 & =x
\end{aligned}
$$

CLASSROOM	
EXAMPLE 3	Using the Pythagorean Theorem (cont'd)

Step 5 State the answer.

The length of the ladder is 13 feet and the distance of the top of the ladder to the ground is 12 feet.

Step 6 Check.
$5^{2}+12^{2}=13^{2}$ and 12 is one less than 13 , as required.

Objective 3

Solve applied problems using area

 formulas.
CLASSROOM EXAMPLE 4

Solving an Area Problem
Suppose the pool is 20 ft by 40 ft .
The homeowner wants to plant a
strip of grass around the edge of
the pool. There is enough seed to
cover $700 \mathrm{ft}^{2}$. How wide should the grass strip be?

Solution:

Step 1 Read the problem carefully.

Step 2 Assign the variable.
Let $x=$ the width of the grass strip

CLASSROOM
EXAMPLE 4
Solving an Area Problem (cont'd)
Step 3 Write an equation. The width of the larger rectangle is $20+$ $20 x$, and the length is $40+2 x$.

Area of the rectangle - area of pool = area of grass

$$
(20+2 x)(40+2 x)-20(40)=700
$$

Step 4 Solve. $\quad 800+120 x+4 x^{2}-800=700$
$4 x^{2}+120 x-700=0$
$x^{2}+30 x-175=0$
$(x+35)(x-5)=0$
$x+35=0 \quad$ or $\quad x-5=0$
$x=-35 \quad$ or $\quad x=5$

CLASSROOM EXAMPLE 4 Solving an Area Problem (cont'd)

Step 5 State the answer.

The width cannot be -35 , so the grass strip should be 5 fee wide.

Step 6 Check.

If $x=5$, then the area of the large rectangle is $(40+2 \cdot 5)=$ $50 \cdot 30=1500 \mathrm{ft}^{2}$

The area of the pool is $40 \cdot 20=800 \mathrm{ft}^{2}$.

So, the area of the grass strip is $1500-800=700 \mathrm{ft}^{2}$, as required. The answer is correct.

A ball is projected upward from the ground. Its distance in feet from the ground at t seconds is $s(t)=-16 t^{2}+64 t$. At what time will the ball be 32 feet from the ground?

Solution:

$$
\begin{gathered}
s(t)=-16 t^{2}+64 t \\
32=-16 t^{2}+64 t \\
16 t^{2}-64 t+32=0 \\
t^{2}-4 t+2=0
\end{gathered}
$$

The Consumer Price Index (CPI) is used to measure trends in prices for a "basket" of goods purchased by typical American families. This index uses a base year of 1967, which means that the index number for 1967 is 100 . The quadratic function defined by

$$
f(x)=-0.065 x^{2}+14.8 x+249
$$

approximates the CPI for the years 1980-2005, where x is the number of years that have elapsed since 1980.
(Source: Bureau of Labor Statistics.)

Use the model to approximate the CPI for 2000, to the nearest whole number.

In what year did the CPI reach 450 ? (Round down for the year.)
The ball will be at a height of 32 ft at about 0.6 seconds and 3.4 In war

CLASSROOM
EXAMPLE 6
Using a Quadratic Function to Model the CPI (cont'd)
In what year did the CPI reach 450? (Round down for the year.)

$$
\begin{aligned}
f(x) & =-0.065 x^{2}+14.8 x+249 \\
450 & =-0.065 x^{2}+14.8 x+249 \\
0 & =-0.065 x^{2}+14.8 x-201 \\
x & =\frac{-14.8 \pm \sqrt{14.8^{2}-4(-0.065)(-201)}}{2(-0.065)} \\
x & \approx 14.5 \text { or } x \approx 213.2
\end{aligned}
$$

The CPI first reached 450 in $1980+14 y r=1994$. (The second solution is rejected as $1980+213=2192$, which is far beyond period covered by the model.

