9.5 Graphs of Quadratic Functions

Objectives
1 Graph a quadratic function.
2 Graph parabolas with horizontal and vertical shifts
3 Use the coefficient of x^{2} to predict the shape and direction in which a parabola opens.

4 Find a quadratic function to model data.

Graph a quadratic function.

The graph shown below is a graph of the simplest quadratic function, defined by $y=x^{2}$.

This graph is called a parabola.

x	y
-2	4
-1	1
0	0
1	1
2	4

The point $(0,0)$, the lowest point on the curve, is the vertex.

Graph a quadratic function.

The vertical line through the vertex is the axis of the parabola, here $x=0$.

A parabola is symmetric about its axis

Graph parabolas with horizontal and vertical shifts.

\qquad Quadratic Function
A function that can be written in the form
$\qquad \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$
for real numbers a, b, and c, with $a \neq 0$, is a quadratic function.

The graph of any quadratic function is a parabola with a vertical axis.

We use the variable \boldsymbol{y} and function notation $\boldsymbol{f}(\boldsymbol{x})$ interchangeably. Although we Use the letter f most often to name quadratic functions, other letters can be used. We use the capital letter \boldsymbol{F} to distinguish between different parabolas graphed on the same coordinate axes

Graph parabolas with horizontal and vertical shifts.

Parabolas do not need to have their vertices at the origin

The graph of

$$
F(x)=x^{2}+k
$$

is shifted, or translated k units vertically compared to $f(x)=x^{2}$.
CLASSROON Graphing a Parabola (Vertical Shift) EXAMPLE 1

Graph $f(x)=x^{2}+3$. Give the vertex, domain, and range. Solution:
The graph has the same shape as $f(x)=x^{2}$, but shifted up 3 units.

Make a table of points.

\boldsymbol{x}	$\boldsymbol{x}^{2}+3$
-2	7
-1	4
0	3
1	4
2	7

vertex $(0,3)$
domain: $(-\infty, \infty)$
range: $[3, \infty)$

Graph parabolas with horizontal and vertical shifts.

Vertical Shift
The graph of $F(x)=x^{2}+\boldsymbol{k}$ is a parabola.
The graph has the same shape as the graph of $f(x)=x^{2}$.
aThe parabola is shifted k units up if $k>0$, and $\|k\|$ units down if $k<0$.
UThe vertex is $(0, k)$.

Graph $f(x)=(x+2)^{2}$. Give the vertex, axis, domain, and range Solution:
The graph has the same shape as $f(x)=x^{2}$, but shifted 2 units to the left.

Make a table of points.

\boldsymbol{x}	$(\boldsymbol{x + 2)}$
-5	9
-4	4
-2	0
0	4
1	9

Graph parabolas with horizontal and vertical shifts.

Horizontal Shift

The graph of $\boldsymbol{F}(\boldsymbol{x})=(\boldsymbol{x}-\boldsymbol{h})^{2}$ is a parabola.

The graph has the same shape as the graph of $f(x)=x^{2}$.
The parabola is shifted h units to the right if $h>0$, and $|h|$ units to the left if $h<0$.

The vertex is $(h, 0)$
The graph has the same shape as $f(x)=x^{2}$, but shifted 2 units to the right and 3 unit up.

Make a table of points.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	5
1	2
2	1
3	2
4	5

vertex $(2,1)$ axis $x=2$
domain: $(-\infty, \infty)$ range: $[1, \infty)$

Graph parabolas with horizontal and vertical shifts.

Vertex and Axis of Parabola

The graph of $\boldsymbol{F}(\boldsymbol{x})=(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$ is a parabola.
The graph has the same shape as the graph of $f(x)=x^{2}$.
The vertex of the parabola is (h, k).
The axis is the vertical line $x=h$.

Objective 3

Use the coefficient of x^{2} to predict the shape and direction in which a parabola opens.

CLASSROOM	Graphing a Parabola That Opens Down
EXAMPLE 4	

Graph $f(x)=-2 x^{2}-3$. Give the vertex, axis, domain, and range. Solution:
The coefficient (-2) affects the shape of the graph; the 2 makes the parabola narrower.

The negative sign makes the parabola open down.

The graph is shifted down 3 units.

CLASSROOM	
EXAMPLE 4	Graphing a Parabola That Opens Down (cont'd)

Graph $f(x)=-2 x^{2}-3$.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	-11
-1	-5
0	-3
1	-
2	-11

vertex $(0,-3)$

axis $x=0$
domain: $(-\infty, \infty)$
range: $(-\infty,-3]$

Use the coefficient of x^{2} to predict the shape and direction in which a parabola opens.

General Principles of $F(x)=a(x-h)^{2}+k(a \neq 0)$

1. The graph of the quadratic function defined by

$$
F(x)=a(x-h)^{2}+k, a \neq 0
$$

is a parabola with vertex (h, k) and the vertical line $x=h$ as axis.
2. The graph opens up if a is positive and down if a is negative.
3. The graph is wider than that of $f(x)=x^{2}$ if $0<|a|<1$

The graph is narrower than that of $f(x)=x^{2}$ if $|a|>1$.

CLASSROOM	Using the General Characteristics to Graph a Parabola
EXAMPLE 5	

Graph $f(x)=\frac{1}{2}(x-2)^{2}+1$.
Solution:
Parabola opens up.
Narrower than $f(x)=x^{2}$
Vertex: $(2,1)$
axis $x=2$
domain: $(-\infty, \infty)$
range: $[1, \infty)$

