9.1 The Square Root Property and Completing the Square

Objectives
1 Review the zero-factor property.
2 Learn the square root property.
3 Solve quadratic equations of the form $(a x+b)^{2}=c$ by extending the square root property.

4 Solve quadratic equations by completing the square.
5 Solve quadratic equations with solutions that are not real numbers.

Review the zero-factor property

Zero-Factor Property

If two numbers have a product of 0 , then at least one of the numbers must be 0 . That is, if $a b=0$, then $a=0$ or $b=0$.

```
CLASSROOM
    Using the Zero-Factor Property
Use the zero-factor property to solve 2x - 3x=-1.
```


Learn the square root property.

Square Root Property

If x and k are complex numbers and $x^{2}=k$, then

$$
x=\sqrt{k} \quad \text { or } \quad x=-\sqrt{k} .
$$

Remember that if $k \neq 0$, using the square root property always produces two square roots, one positive and one negative.

The Square Root Property and Completing the Square

Quadratic Equation

An equation that can be written in the form

$$
a x^{2}+b x+c=0
$$

where a, b, and c are real numbers, with $a \neq 0$, is a quadratic equation. The given form is called standard form.
Solution:

$$
\begin{array}{rlr}
2 x^{2}-3 x+1=0 & & \\
(2 x-1)(x-1)=0 & \\
2 x-1=0 & \text { or } & x-1=0 \\
2 x=1 & & x=1 \\
x=\frac{1}{2} & &
\end{array}
$$

Solution set is $\left\{\frac{1}{2}, 1\right\}$.
Solution:

$$
\} .
$$

CLASSROOM Extending the Square Root Property EXAMPLE 4
 Solution:

$$
\begin{array}{c|r}
x-3=\sqrt{16} & \text { or } \\
x-3=4 & x-3=\sqrt{16} \\
x=7 & x-3=-4 \\
x=-1
\end{array}
$$

	CLASSROOM EXAMPLE 4 Extend	Extending the Square Root Property (cont'd)	
	Check:		
	$(7-3)^{2}=16$	$(-1-3)^{2}=16$	
	$4^{2}=16$	$-4^{2}=16$	
	$16=16$	$16=16$	
	True	True	
	The solution set is $\{-1,7\}$.		
Stictere Slide 9.1-9			

CLASSROOM
EXAMPLE 5

Solve $(3 x+1)^{2}=2$.
Solution:

Solution:

$$
\begin{array}{l|l}
3 x+1=\sqrt{2} & \text { or } \\
3 x=-1+\sqrt{2} & 3 x+1=-\sqrt{2} \\
x=\frac{-1+\sqrt{2}}{3} & 3 x=-1-\sqrt{2} \\
3 & x=\frac{-1-\sqrt{2}}{3}
\end{array}
$$

CLASSROOM	
EXAMPLE 5	Extending the Square Root Property (cont'd)

Solution:

$$
x^{2}-2 x=10
$$

Completing the square

$$
\left[\frac{1}{2}(-2)\right]^{2}=(-1)^{2}=1
$$

Add 1 to each side.

$$
\begin{gathered}
x^{2}-2 x+1=10+1 \\
(x-1)^{2}=11
\end{gathered}
$$

CLASSROOM
EXAMPLE 6
Use the square root property.

$$
\begin{array}{rlr}
x-1=\sqrt{11} & \text { or } & x-1=-\sqrt{11} \\
x=1+\sqrt{11} & \text { or } & x=1-\sqrt{11}
\end{array}
$$

Check: $\quad x=1+\sqrt{11}$:

$$
\begin{array}{r}
(1+\sqrt{11})^{2}-2(1+\sqrt{11})-10=0 \\
12+2 \sqrt{11}-2-2 \sqrt{11}-10=0 \quad \text { True }
\end{array}
$$

The solution set is $\{1 \pm \sqrt{11}\}$.

Solve quadratic equations by completing the square.

Completing the Square

To solve $a x^{2}+b x+c=0(a \neq 0)$ by completing the square, use these steps.

Step 1 Be sure the second-degree (squared) term has
coefficient 1. If the coefficient of the squared term is one,
proceed to Step 2. If the coefficient of the squared term is
not 1 but some other nonzero number a, divide each side of the equation by a.

Step 2 Write the equation in correct form so that terms with variables are on one side of the equals symbol and the constant is on the other side.

Step 3 Square half the coefficient of the first-degree (linear) term.

Solve quadratic equations by completing the square.

Completing the Square (continued)

Step 4 Add the square to each side.

Step 5 Factor the perfect square trinomial. One side should now be a perfect square trinomial. Factor it as the square of a binomial. Simplify the other side.

Step 6 Solve the equation. Apply the square root property to complete the solution

Steps 1 and 2 can be done in either order. With some equations, it is more convenient to do Step 2 first.

CLASSROOM

EXAMPLE 7
Use the square root property

$$
\begin{aligned}
& x+\frac{3}{2}=\sqrt{\frac{13}{4}} \\
& \text { or } \quad x+\frac{3}{2}=-\sqrt{\frac{13}{4}} \\
& x+\frac{3}{2}=\frac{\sqrt{13}}{2} \\
& \text { or } \quad x+\frac{3}{2}=-\frac{\sqrt{13}}{2} \\
& x=\frac{-3+\sqrt{13}}{2} \\
& \text { or } \quad x=\frac{-3-\sqrt{13}}{2} \\
& \text { Check that the solution set is }\left\{\frac{-3 \pm \sqrt{13}}{2}\right\} \text {. }
\end{aligned}
$$

CLASSROOM EXAMPLE 7
Solve $x^{2}+3 x-1=0$
Solution:

$$
x^{2}+3 x=1
$$

Completing the square

$$
\left[\frac{1}{2}(3)\right]^{2}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}
$$

Add the square
to each side.

$$
x^{2}+3 x+\frac{9}{4}=1+\frac{9}{4}
$$

$$
\left(x+\frac{3}{2}\right)^{2}=\frac{13}{4}
$$

CLASSROOM
EXAMPLE 8
Solve $3 x^{2}+6 x-2=0$.
Solution:

$$
\begin{aligned}
3 x^{2}+6 x & =2 \\
x^{2}+2 x & =\frac{2}{3}
\end{aligned}
$$

Completing the square

$$
\begin{gathered}
{\left[\frac{1}{2}(2)\right]^{2}=(1)^{2}=1} \\
x^{2}+2 x+1=\frac{2}{3}+1 \\
(x+1)^{2}=\frac{5}{3}
\end{gathered}
$$

EXAMPLE 8
Use the square root property.

$$
\begin{aligned}
& \qquad \begin{array}{rlr}
x+1=\sqrt{\frac{5}{3}} & \text { or } & x+1 \frac{3}{2}=-\sqrt{\frac{5}{3}} \\
x=-1+\sqrt{\frac{5}{3}} & \text { or } & x=-1-\sqrt{\frac{5}{3}}
\end{array} \\
& x=-1+\frac{\sqrt{15}}{3} \\
& x=\frac{-3+\sqrt{15}}{3} \\
& \text { or } \\
& \text { Check that the solution set is }\left\{\begin{array}{ll}
& x=-1-\frac{\sqrt{15}}{3} \\
3
\end{array}\right\} .
\end{aligned}
$$

Objective 5

Solve quadratic equations with solutions that are not real numbers.

Slide 9.1-20
CLASSROOM Solve for Nonreal Complex Solutions

CLASSROOM EXAMPLE 9
Solve the equation
Solution:
$(x+5)^{2}=-100$

$$
\begin{array}{rll}
x+5=\sqrt{-100} & \text { or } & x+5=-\sqrt{-100} \\
x+5=10 i & \text { or } & x+5=-10 i \\
x=-5+10 i & \text { or } & x=-5-10 i
\end{array}
$$

The solution set is $\{-5 \pm 10 i\}$,

Slide 9.1-22

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { CLASSROOM } \\
\text { EXAMPLE } 9
\end{array} \\
x-\frac{3}{2}=\sqrt{-\frac{3}{20}} \\
\text { Solve for Nonreal Complex Solutions (cont'd) } \\
x-\frac{3}{2}=\frac{i \sqrt{3}}{\sqrt{20}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \\
x-\frac{3}{2}=-\frac{i \sqrt{-\frac{3}{20}}}{10} \\
\text { or } \\
x
\end{array} \text { or } \quad x-\frac{3}{2}=\frac{-i \sqrt{3}}{\sqrt{20}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{-i \sqrt{15}}{10} \\
& x
\end{aligned}
$$

9.2 The Quadratic Formula

Objectives
1 Derive the quadratic formula.
2 Solve quadratic equations by using the quadratic formula.
3 Use the discriminant to determine the number and type of solutions.

Derive the quadratic formula

Solve $a x^{2}+b x+c=0$ by completing the square (assuming $a>0$).

$$
\begin{aligned}
a x^{2}+b x+c & =0 & \left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}}{4 a^{2}}+\frac{-c}{a} \\
x^{2}+\frac{b}{a} x+\frac{c}{a} & =0 & \left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}}{4 a^{2}}+\frac{-4 a c}{4 a^{2}} \\
x^{2}+\frac{b}{a} x & =-\frac{c}{a} & \left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}-4 a c}{4 a^{2}} \\
{\left[\frac{1}{2}\left(\frac{b}{a}\right)\right]^{2} } & =\left(\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}} & x+\frac{b}{2 a} & =\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}} & =-\frac{c}{a}+\frac{b^{2}}{4 a^{2}} & \text { or } x+\frac{b}{2 a} & =-\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}
\end{aligned}
$$

Derive the quadratic formula.

Quadratic Formula

The solutions of the equation $a x^{2}+b x+c=0(a \neq 0)$ are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Solution:

$$
\begin{aligned}
& a=4, b=-11 \text { and } c=-3 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-11) \pm \sqrt{(-11)^{2}-4(4)(-3)}}{2(4)} \\
& x=\frac{11 \pm \sqrt{121+48}}{8} \\
& x=\frac{11 \pm \sqrt{169}}{8} \\
& \text { The solution set is }\left\{-\frac{1}{4}, 3\right\} \text {. } \\
& x=\frac{11+13}{8} \\
& =\frac{24}{8}=3 \\
& x=\frac{11-13}{8} \\
& =\frac{-2}{8}=-\frac{1}{4}
\end{aligned}
$$

CLASSROOM	Using the Quadratic Formula (Nonreal Complex Solutions)
EXAMPLE 3	

EXAMPLE 3

Solve $(x+5)(x+1)=10 x$.

$$
\begin{array}{ll}
\text { Solution: } & x=\frac{4 \pm \sqrt{16-20}}{4} \\
\begin{array}{ll}
x^{2}+6 x+5=10 x & x=\frac{4 \pm \sqrt{-4}}{2} \\
x^{2}-4 x+5=0 & x=\frac{4 \pm 2 i}{2} \\
a=1, b=-4 \text { and } c=5 & x=\frac{2(2 \pm i)}{2} \\
x=\frac{-b \pm \sqrt{(b)^{2}-4(a)(c)}}{2(a)} & x=2 \pm i
\end{array}
\end{array}
$$

Use the discriminant to determine the number and type of solutions.

Discriminant

The discriminant of $a x^{2}+b x+c=0$ is $\boldsymbol{b}^{2}-4 a c$. If a, b, and c are integers, then the number and type of solutions are determined as follows

Discriminant	Number and Type of Solutions
Positive, and the square of an integer	Two rational solutions
Positive, but not the square of an integer	Two irrational solutions
Zero	One rational solution
Negative	Two nonreal complex solutions

CLASSROOM Using the Discriminant

Find the discriminant. Use it to predict the number and type of
solutions for each equation. Tell whether the equation can be solved
by factoring or whether the quadratic formula should be used.
$10 x^{2}-x-2=0$
Solution:
$a=10, b=-1, c=-2$
$b^{2}-4 a c=(-1)^{2}-4(10)(-2)$

$$
=1+80
$$

$$
=81
$$

There will be two rational solutions, and the equation can be solved by factoring.

9.3 Equations Quadratic in Form

Objectives
1 Solve an equation with fractions by writing it in quadratic form
2 Use quadratic equations to solve applied problems.
3 Solve an equation with radicals by writing it in quadratic form.
4 Solve an equation that is quadratic in form by substitution.

Equations Quadratic in Form

METHODS FOR SOLVING QUADRATIC EQUATIONS		
Method	Advantages	Disadvantages
Factoring	This is usually the fastest method.	Not all polynomials are factorable; some factorable polynomials are difficult to factor.
Square root property	This is the simplest method for solving equations of the form $(a x+b)^{2}=c$.	Few equations are given in this form.
Completing the square	This method can always be used, although most people prefer the quadratic formula.	It requires more steps than other methods.
Quadratic formula	This method can always be used.	It is more difficult than factoring because of the square root, although calculators can simplify its use.
(1) Slide 9.3-2		

$\begin{array}{ll}\text { CLASSROOM } \\ \text { EXAMPLE } 1 & \text { Solving an Equation with Fractions that Leads to a Quadratic Equatio }\end{array}$
Solve $\frac{4}{x-1}+9=-\frac{7}{x}$.
Solution:
Multiply by the LCD, $x(x-1)$.

$$
\begin{aligned}
x(x-1)\left(\frac{4}{x-1}+9\right) & =x(x-1)\left(-\frac{7}{x}\right) \\
4 x+9 x(x-1) & =-7(x-1) \\
4 x+9 x^{2}-9 x & =-7 x+7 \\
9 x^{2}+2 x-7 & =0
\end{aligned}
$$

$$
\begin{aligned}
& 9 x^{2}+2 x-7=0 \\
& (9 x-7)(x+1)=0 \\
& 9 x-7=0 \quad \text { or } \\
& \begin{array}{c}
x=\frac{7}{9} \quad \text { or }
\end{array} \quad x+1=0 \\
&
\end{aligned}
$$

The solution set is $\left\{-1, \frac{7}{9}\right\}$.

| $\begin{array}{l}\text { CLASSROOM } \\ \text { EXAMPLE } 2\end{array}$ Solving a Motion Problem (cont'd) |
| :--- | :--- |

Step 3 Write an equation. The time going upriver added to the time going downriver is $1 \frac{3}{4}$ or $\frac{7}{4} \mathrm{hr}$.

$$
\frac{5}{x-3}+\frac{5}{x+3}=\frac{7}{4}
$$

Step 4 Solve the equation. Multiply each side by the LCD,

$$
4(x-3)(x+3)
$$

$$
4(x-3)(x+3) \frac{5}{x-3}+4(x-3)(x+3) \frac{5}{x+3}=4(x-3)(x+3)\left(\frac{7}{4}\right)
$$

$$
20(x+3)+20(x-3)=7(x-3)(x+3)
$$

Slide 9.3-8

$$
\begin{aligned}
& \begin{aligned}
\text { CLASSROOM } \\
\text { EXAMPLE } 2
\end{aligned} \text { Solving a Motion Problem (cont'd) } \\
& \qquad \begin{aligned}
20 x+60+20 x-60 & =7\left(x^{2}-9\right) \\
40 x & =7 x^{2}-63 \\
0 & =7 x^{2}-40 x-63 \\
0 & =(7 x+9)(x-7) \\
7 x+9 & \text { or } x-7 \\
x=-\frac{9}{7} & \text { or } x=7
\end{aligned}
\end{aligned}
$$

Step 5 State the answer. The speed cannot be negative, so Cody rows at the speed of 7 mph .

Step 6 Check that this value satisfies the original problem.

Use quadratic equations to solve applied problems.

PROBLEM-SOLVING HINT
Recall from Section 7.5 that a person's work rate is $\frac{1}{t}$ part of the job per hour, where t is the time in hours required to do the complete job. Thus, the part of the job the person will do in x hours is $\frac{1}{t} x$

CLASSROOM EXAMPLE 3		Solving a Work Problem	
Two chefs are preparing a banquet. One chef could prepare the banquet in 2 hr less time than the other. Together, they complete the job in 5 hr . How long would it take the faster chef working alone?			
Solution:			
Step 1 Read the problem carefully.			
Step 2 Assign the variable. Let $x=$ the slow chef's time alone. Then, $x-2=$ the fast chef's time alone.			
	Rate	Time working Together	Fractional Part of the Job Done
Slow	$\frac{1}{x}$	5	$\frac{5}{x}$
Fast	$\frac{1}{x-2}$	5	$\frac{5}{x-2}$

CLASSROOM EXAMPLE 3 Solving a Work Problem (cont'd)

Step 3 Write an equation. Since together they complete 1 job,

$$
\frac{5}{x}+\frac{5}{x-2}=1
$$

Step 4 Solve the equation. Multiply each side by the LCD, $x(x-2)$.

$$
\begin{aligned}
x(x-2)\left(\frac{5}{x}\right)+x(x-2)\left(\frac{5}{x-2}\right) & =x(x-2)(1) \\
5(x-2)+5 x & =x(x-2) \\
5 x-10+5 x & =x^{2}-2 x \\
0 & =x^{2}-12 x+10
\end{aligned}
$$

$$
\begin{aligned}
& \substack{\text { CLASSROOM } \\
\text { EXAMPLE } 3} \\
& \text { Here } a=1, b=-12 \text {, and } c=10 \text {. } \\
& x=\frac{-(-12) \pm \sqrt{(-12)^{2}-4(1)(10)}}{2(1)} \text { Use the quadratic formula. } \\
& x=\frac{12 \pm \sqrt{144-40}}{2}=\frac{12 \pm \sqrt{104}}{2}=\frac{12 \pm 2 \sqrt{26}}{2} \\
& =\frac{2(6 \pm \sqrt{26})}{2}=6 \pm \sqrt{26}
\end{aligned}
$$

CLASSROOM EXAMPLE 3
 Solving a Work Problem (cont'd)

Step 5 State the answer. The slow chef's time cannot be 0.9 since the fast chef's time would then be $0.9-2$ or -1.1 . So the slow chef's time working alone is 11.1 hr and the fast chef's time working alone is $11.1-2=9.1 \mathrm{hr}$.

Step 6 Check that this value satisfies the original problem.

Objective 3

Solve an equation with radicals by writing it in quadratic form.

Solve $2 x=\sqrt{x}+1$.
Solution: $\quad 2 x-1=\sqrt{x}$

$$
\begin{array}{rl}
(2 x-1)^{2} & =(\sqrt{x})^{2} \\
4 x^{2}-4 x+1 & =x \\
4 x^{2}-5 x+1 & \text { Isolate. } \\
(4 x-1)(x-1) & =0 \\
4 x-1=0 \quad \text { Square. } \\
x=\frac{1}{4} \quad \text { or } & x-1=0 \\
x & x=1
\end{array}
$$

Objective 4

Solve an equation that is quadratic

 in form by substitution.| $\underset{\substack{\text { classroom } \\ \text { EXAMPLE 5 }}}{\text { Defining Substitution Variables }}$ | | |
| :---: | :---: | :---: |
| Define a variable u, and write each equation in the form $a u^{2}+b u+c=0$. | | |
| $2 x^{4}+5 x^{2}-12=0$
 Solution: | | $2(x+5)^{2}-7(x+5)+6=0$ |
| | | |
| Let $u=x^{2}$. | | Let $u=(x+5)$. |
| $2 u^{2}+5 u-1$ | | $2 u^{2}-7 u+6=0$ |

classroo EXAMPLE	Defining Substitution Variables (cont'd)
Define a varia $x^{\frac{4}{3}}-8 x^{\frac{2}{3}}+$ Solution: Let $u=x^{\frac{3}{3}}$ $u^{2}-8 u+16$	u, and write the equation in the form $5=0$

CLASSROOM	
EXAMPLE 6	Solving Equations that Are Quadratic in Form

$$
\text { Solve } 9 x^{4}-37 x^{2}+4=0 .
$$

Solution:

$$
\begin{aligned}
& \text { Let } y=x^{2}, \text { so } y^{2}=\left(x^{2}\right)^{2}=x^{4} \\
& \qquad \begin{array}{c}
9 y^{2}-37 y+4=0 \\
(y-4)(9 y-1)=0 \\
y-4=0
\end{array} \text { or } \quad 9 y-1=0 \\
& y=4 \text { or }
\end{aligned} \frac{y=\frac{1}{9}}{} .
$$

CLASSROOM

 EXAMPLE 6To find x, substitute x^{2} for y.

$$
\begin{array}{lll}
x^{2}=4 & \text { or } & x^{2}=\frac{1}{9} \\
x= \pm 2 & \text { or } & x= \pm \frac{1}{3}
\end{array}
$$

Check

\[\)| $144-148+4=0$ |
| ---: |

\]

$0=0$

True | $\frac{1}{9}-\frac{37}{9}+4=0$ |
| ---: |
| Theck |
| True |
| The solution set is $\left\{ \pm \frac{1}{3}, \pm 2\right\}$. |

CLASSROOM
 Solving Equations that Are Quadratic in Form (cont'd)
 EXAMPLE 6

Solve $x^{4}-4 x^{2}=-2$.
Solution:
$x^{4}-4 x^{2}+2=0$

$$
\begin{aligned}
& \text { Let } y=x^{2} \text {, so } y^{2}=\left(x^{2}\right)^{2}=x^{4} . \\
& \qquad \begin{array}{l}
y^{2}-4 y+2=0 \\
y=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(2)}}{2(1)}=-\mathbf{4}, \boldsymbol{c}=\mathbf{2} \\
= \\
=\frac{4 \pm 2 \sqrt{2}}{2}=\frac{2(2 \pm \sqrt{16-8}}{2}=\frac{4 \pm \sqrt{8}}{2} \\
2
\end{array}=2 \pm \sqrt{2}
\end{aligned}
$$

CLASSROOM
EXAMPLE 6
Solving Equations that Are Quadratic in Form (cont'd)
To find x, substitute x^{2} for y.

$$
\begin{aligned}
x^{2} & =2 \pm \sqrt{2} \\
x & = \pm \sqrt{2 \pm \sqrt{2}}
\end{aligned}
$$

Check

$$
\begin{aligned}
& (2+\sqrt{2})^{2}-4(2+\sqrt{2})=-2 \\
& 4+4 \sqrt{2}+2-8-4 \sqrt{2}=-2
\end{aligned} \begin{array}{r}
(2-\sqrt{2})^{2}-4(2-\sqrt{2})=-2 \\
\text { True } \quad-2=-2
\end{array} \begin{array}{r}
4-4 \sqrt{2}+2-8+4 \sqrt{2}=-2 \\
\text { True }-2=-2
\end{array}
$$

Solve an equation that is quadratic in form by substitution.

Solving an Equation That is Quadratic in Form by Substitution

Step 1 Define a temporary variable u, based on the relationship
between the variable expressions in the given equation.
Substitute u in the original equation and rewrite the equation in the form $a u^{2}+b u+c=0$

Step 2 Solve the quadratic equation obtained in Step 1 by factoring or the quadratic formula.

Step 3 Replace u with the expression it defined in Step 1.
Step 4 Solve the resulting equations for the original variable.
Step 5 Check all solutions by substituting them in the original equation.

CLASSROOM EXAMPLE 7

Solve.
$5(x+3)^{2}+9(x+3)=2$
Solution:
Let $y=x+3$, so the equation becomes:

$$
\begin{gathered}
5 y^{2}-9 y=2 \\
(5 y-1)(y+2)=0 \\
5 y-1=0 \quad \text { or } \\
y+2=0 \\
y=\frac{1}{5} \quad \text { or }
\end{gathered} \quad y=-28
$$

CLASSROOM	
EXAMPLE 7	Solving Equations That Are Quadratic in Form (cont'd)

To find x, substitute $x+3$ for y.

$$
\begin{array}{lll}
x+3=\frac{1}{5} & \text { or } & x+3=-2 \\
x=-\frac{14}{5} & \text { or } & x=-5
\end{array}
$$

Check

$$
\begin{array}{c|r}
\frac{1}{5}+\frac{9}{5}=2 & 20-18=2 \\
2=2 & 2=2 \\
\text { True } & \text { True }
\end{array}
$$

The solution set is $\left\{-5,-\frac{14}{5}\right\}$.

CLASSROOM EXAMPLE 7

To find x, substitute $x^{1 / 3}$ for y

$$
\begin{array}{rlrl}
x^{1 / 3} & =-\frac{1}{4} & \text { or } & x^{1 / 3}=1 \\
\left(x^{1 / 3}\right)^{3}=\left(-\frac{1}{4}\right)^{3} & \text { or } & \left(x^{1 / 3}\right)^{3}=(1)^{3} \\
x & =-\frac{1}{64} & \text { or } & x=1 \\
\frac{1}{4} & =-\frac{3}{4}+1 & & 4=3+1 \\
\frac{1}{4} & =\frac{1}{4} & & \\
2 & =2 \quad \text { True } & & \text { True } \\
& & & \text { The solution set is }\left\{-\frac{1}{64}, 1\right\} .
\end{array}
$$

CLASSROOM EXAMPLE 7

Solve.

$$
4 x^{2 / 3}=3 x^{1 / 3}+1
$$

Solution:

$$
\text { Let } y=x^{1 / 3} \text {, so } y^{2}=\left(x^{1 / 3}\right)^{2}=x^{2 / 3}
$$

$$
\begin{gathered}
4 y^{2}=3 y+1 \\
4 y^{2}-3 y-1=0 \\
(4 y+1)=0
\end{gathered} \quad \text { or } \quad(y-1)=0 .
$$

9.4 Formulas and Further Applications

Objectives
1 Solve formulas for variables involving squares and square roots
2 Solve applied problems using the Pythagorean theorem.
3 Solve applied problems using area formulas.
4 Solve applied problems using quadratic functions as models.

Objective 1

Solve formulas for variables involving squares and square roots.

CLASSROOM	
EXAMPLE 1	Solving for Variables Involving Squares or Square Roots

Solve the formula for the given variable. Keep \pm in the answer.
Solve $A=\pi r^{2}$ for r.
Solution:

$$
\begin{array}{ll}
\frac{A}{\pi}=r^{2} & r= \pm \frac{\sqrt{A}}{\sqrt{\pi}} \cdot \frac{\sqrt{\pi}}{\sqrt{\pi}} \\
r= \pm \sqrt{\frac{A}{\pi}} & r= \pm \frac{\sqrt{A \pi}}{\pi}
\end{array}
$$

CLASSROOM EXAMPLE 1 Solving for Variables Involving Squares or Square Roots (cont'd)

Solve the formula for the given variable.
Solve $s=30 \sqrt{\frac{a}{p}}$ for a.

$$
\begin{aligned}
s^{2} & =900 \cdot \frac{a}{p} & & \text { Square both sides. } \\
p s^{2} & =900 a & & \text { Multiply by } p . \\
\frac{p s^{2}}{900} & =a & & \text { Divide by } 900 .
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { CLASSROOM } \\
\text { EXAMPLE } 2
\end{array} \\
& \text { Solving for a Variable That Appears in First- and Second-Degree Terms } \\
& \text { Solve } 2 t^{2}-5 t+k=0 \text { for } t \text {. } \\
& \text { Solution: } \\
& \text { Use } a=2, b=-5 \text {, and } c=k \text { in } \\
& \text { the quadratic formula. } \\
& t=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2) k}}{2(2)} \\
& t=\frac{5 \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \text { The solutions are } t=\frac{5+\sqrt{25-8 k}}{4} \\
& 4
\end{aligned} \text { and } t=\frac{5-\sqrt{25-8 k}}{4} .
$$

Objective 2

CLASSROOM	
EXAMPLE 3	Using the Pythagorean Theorem

A ladder is leaning against a house. The distance from the bottom of the ladder to the house is 5 ft . The distance from the top of ladder to the ground is 1 ft less than the length of the ladder. How long is ladder?

Solution:
Step 1 Read the problem carefully.

Step 2 Assign the variable.

Let $x=$ the length of the ladder. Then, $x-1=$ the distance from the top of the ladder to the ground.

CLASSROOM	
EXAMPLE 3	Using the Pythagorean Theorem (cont'd)

Step 3 Write an equation.

The wall of the house is perpendicular to the ground, so this is a right triangle. Use the Pythagorean formula.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
5^{2}+(x-1)^{2} & =x^{2}
\end{aligned}
$$

Step 4 Solve.

$$
\begin{aligned}
25+x^{2}-2 x+1 & =x^{2} \\
26 & =2 x \\
13 & =x
\end{aligned}
$$

CLASSROOM	
EXAMPLE 3	Using the Pythagorean Theorem (cont'd)

Step 5 State the answer.

The length of the ladder is 13 feet and the distance of the top of the ladder to the ground is 12 feet.

Step 6 Check.
$5^{2}+12^{2}=13^{2}$ and 12 is one less than 13 , as required.

Objective 3

Solve applied problems using area

 formulas.
CLASSROOM EXAMPLE 4

Solving an Area Problem
Suppose the pool is 20 ft by 40 ft .
The homeowner wants to plant a
strip of grass around the edge of
the pool. There is enough seed to
cover $700 \mathrm{ft}^{2}$. How wide should the grass strip be?

Solution:

Step 1 Read the problem carefully.

Step 2 Assign the variable.
Let $x=$ the width of the grass strip

CLASSROOM
EXAMPLE 4
Solving an Area Problem (cont'd)
Step 3 Write an equation. The width of the larger rectangle is $20+$ $20 x$, and the length is $40+2 x$.

Area of the rectangle - area of pool = area of grass

$$
(20+2 x)(40+2 x)-20(40)=700
$$

Step 4 Solve. $\quad 800+120 x+4 x^{2}-800=700$
$4 x^{2}+120 x-700=0$
$x^{2}+30 x-175=0$
$(x+35)(x-5)=0$
$x+35=0 \quad$ or $\quad x-5=0$
$x=-35 \quad$ or $\quad x=5$

CLASSROOM EXAMPLE 4 Solving an Area Problem (cont'd)

Step 5 State the answer.

The width cannot be -35 , so the grass strip should be 5 fee wide.

Step 6 Check.

If $x=5$, then the area of the large rectangle is $(40+2 \cdot 5)=$ $50 \cdot 30=1500 \mathrm{ft}^{2}$

The area of the pool is $40 \cdot 20=800 \mathrm{ft}^{2}$.

So, the area of the grass strip is $1500-800=700 \mathrm{ft}^{2}$, as required. The answer is correct.

A ball is projected upward from the ground. Its distance in feet from the ground at t seconds is $s(t)=-16 t^{2}+64 t$. At what time will the ball be 32 feet from the ground?

Solution:

$$
\begin{gathered}
s(t)=-16 t^{2}+64 t \\
32=-16 t^{2}+64 t \\
16 t^{2}-64 t+32=0 \\
t^{2}-4 t+2=0
\end{gathered}
$$

The Consumer Price Index (CPI) is used to measure trends in prices for a "basket" of goods purchased by typical American families. This index uses a base year of 1967, which means that the index number for 1967 is 100 . The quadratic function defined by

$$
f(x)=-0.065 x^{2}+14.8 x+249
$$

approximates the CPI for the years 1980-2005, where x is the number of years that have elapsed since 1980.
(Source: Bureau of Labor Statistics.)

Use the model to approximate the CPI for 2000, to the nearest whole number.

In what year did the CPI reach 450 ? (Round down for the year.)
The ball will be at a height of 32 ft at about 0.6 seconds and 3.4 In war

CLASSROOM
EXAMPLE 6
Using a Quadratic Function to Model the CPI (cont'd)
In what year did the CPI reach 450? (Round down for the year.)

$$
\begin{aligned}
f(x) & =-0.065 x^{2}+14.8 x+249 \\
450 & =-0.065 x^{2}+14.8 x+249 \\
0 & =-0.065 x^{2}+14.8 x-201 \\
x & =\frac{-14.8 \pm \sqrt{14.8^{2}-4(-0.065)(-201)}}{2(-0.065)} \\
x & \approx 14.5 \text { or } x \approx 213.2
\end{aligned}
$$

The CPI first reached 450 in $1980+14 y r=1994$. (The second solution is rejected as $1980+213=2192$, which is far beyond period covered by the model.

9.5 Graphs of Quadratic Functions

Objectives
1 Graph a quadratic function.
2 Graph parabolas with horizontal and vertical shifts
3 Use the coefficient of x^{2} to predict the shape and direction in which a parabola opens.

4 Find a quadratic function to model data.

Graph a quadratic function.

The graph shown below is a graph of the simplest quadratic function, defined by $y=x^{2}$.

This graph is called a parabola.

x	y
-2	4
-1	1
0	0
1	1
2	4

The point $(0,0)$, the lowest point on the curve, is the vertex.

Graph a quadratic function.

The vertical line through the vertex is the axis of the parabola, here $x=0$.

A parabola is symmetric about its axis

Graph parabolas with horizontal and vertical shifts.

\qquad Quadratic Function
A function that can be written in the form
$\qquad \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$
for real numbers a, b, and c, with $a \neq 0$, is a quadratic function.

The graph of any quadratic function is a parabola with a vertical axis.

We use the variable \boldsymbol{y} and function notation $\boldsymbol{f}(\boldsymbol{x})$ interchangeably. Although we Use the letter f most often to name quadratic functions, other letters can be used. We use the capital letter \boldsymbol{F} to distinguish between different parabolas graphed on the same coordinate axes

Graph parabolas with horizontal and vertical shifts.

Parabolas do not need to have their vertices at the origin

The graph of

$$
F(x)=x^{2}+k
$$

is shifted, or translated k units vertically compared to $f(x)=x^{2}$.
CLASSROON Graphing a Parabola (Vertical Shift) EXAMPLE 1

Graph $f(x)=x^{2}+3$. Give the vertex, domain, and range. Solution:
The graph has the same shape as $f(x)=x^{2}$, but shifted up 3 units.

Make a table of points.

\boldsymbol{x}	$\boldsymbol{x}^{2}+3$
-2	7
-1	4
0	3
1	4
2	7

vertex $(0,3)$
domain: $(-\infty, \infty)$
range: $[3, \infty)$

Graph parabolas with horizontal and vertical shifts.

Vertical Shift
The graph of $F(x)=x^{2}+\boldsymbol{k}$ is a parabola.
The graph has the same shape as the graph of $f(x)=x^{2}$.
aThe parabola is shifted k units up if $k>0$, and $\|k\|$ units down if $k<0$.
UThe vertex is $(0, k)$.

Graph $f(x)=(x+2)^{2}$. Give the vertex, axis, domain, and range Solution:
The graph has the same shape as $f(x)=x^{2}$, but shifted 2 units to the left.

Make a table of points.

\boldsymbol{x}	$\left(\boldsymbol{x + 2)} \mathbf{2}^{2}\right.$
-5	9
-4	4
-2	0
0	4
1	9

Graph parabolas with horizontal and vertical shifts.

Horizontal Shift

The graph of $\boldsymbol{F}(\boldsymbol{x})=(\boldsymbol{x}-\boldsymbol{h})^{2}$ is a parabola.

The graph has the same shape as the graph of $f(x)=x^{2}$.
The parabola is shifted h units to the right if $h>0$, and $|h|$ units to the left if $h<0$.

The vertex is $(h, 0)$
The graph has the same shape as $f(x)=x^{2}$, but shifted 2 units to the right and 3 unit up.

Make a table of points.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	5
1	2
2	1
3	2
4	5

vertex $(2,1)$ axis $x=2$
domain: $(-\infty, \infty)$ range: $[1, \infty)$

Graph parabolas with horizontal and vertical shifts.

Vertex and Axis of Parabola

The graph of $\boldsymbol{F}(\boldsymbol{x})=(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$ is a parabola.
The graph has the same shape as the graph of $f(x)=x^{2}$.
The vertex of the parabola is (h, k).
The axis is the vertical line $x=h$.

Objective 3

Use the coefficient of x^{2} to predict the shape and direction in which a parabola opens.

CLASSROOM	Graphing a Parabola That Opens Down
EXAMPLE 4	

Graph $f(x)=-2 x^{2}-3$. Give the vertex, axis, domain, and range. Solution:
The coefficient (-2) affects the shape of the graph; the 2 makes the parabola narrower.

The negative sign makes the parabola open down.

The graph is shifted down 3 units.

CLASSROOM	
EXAMPLE 4	Graphing a Parabola That Opens Down (cont'd)

Graph $f(x)=-2 x^{2}-3$.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	-11
-1	-5
0	-3
1	-
2	-11

vertex $(0,-3)$

axis $x=0$
domain: $(-\infty, \infty)$
range: $(-\infty,-3]$

Use the coefficient of x^{2} to predict the shape and direction in which a parabola opens.

General Principles of $F(x)=a(x-h)^{2}+k(a \neq 0)$

1. The graph of the quadratic function defined by

$$
F(x)=a(x-h)^{2}+k, a \neq 0
$$

is a parabola with vertex (h, k) and the vertical line $x=h$ as axis.
2. The graph opens up if a is positive and down if a is negative.
3. The graph is wider than that of $f(x)=x^{2}$ if $0<|a|<1$

The graph is narrower than that of $f(x)=x^{2}$ if $|a|>1$.

CLASSROOM	Using the General Characteristics to Graph a Parabola
EXAMPLE 5	

Graph $f(x)=\frac{1}{2}(x-2)^{2}+1$.
Solution:
Parabola opens up.
Narrower than $f(x)=x^{2}$
Vertex: $(2,1)$
axis $x=2$
domain: $(-\infty, \infty)$
range: $[1, \infty)$

9.6 More About Parabolas and Their Applications

Objectives
1 Find the vertex of a vertical parabola.
2 Graph a quadratic function.
3 Use the discriminant to find the number of x-intercepts of a parabola with a vertical axis.

4 Use quadratic functions to solve problems involving maximum or minimum value.

5 Graph parabolas with horizontal axes.

Find the vertex of a vertical parabola.

When the equation of a parabola is given in the form

$$
f(x)=a x^{2}+b x+c,
$$

we need to locate the vertex to sketch an accurate graph.
There are two ways to do this

1. Complete the square.
2. Use a formula derived by completing the square.

CLASSROOM
EXAMPLE 1 Completing the Square to Find the Vertex $(a=1)$
Find the vertex of the graph of $f(x)=x^{2}+4 x-9$.
Solution:
We need to complete the square.

$$
\begin{aligned}
f(x) & =x^{2}+4 x-9 \\
& =\left(x^{2}+4 x\right)-9 \\
& \quad\left[\frac{1}{2}(4)\right]^{2}=2^{2}=4 \\
& =\left(x^{2}+4 x+4-4\right)-9 \\
& =\left(x^{2}+4 x+4\right)-4-9 \\
& =(x+2)^{2}-13
\end{aligned}
$$

The vertex of the parabola is $(-2,-13)$

CLASSROOM
EXAMPLE 2 Completing the Square to Find the Vertex $(a \neq 1)$ EXAMPLE 2
Find the vertex of the graph of $f(x)=2 x^{2}-4 x+1$.
Solution:

We need to complete the square, factor out 2 from the first two terms.

$$
\begin{aligned}
f(x) & =2 x^{2}-4 x+1 \\
f(x) & =2\left(x^{2}-2 x\right)+1 \\
& =2\left(x^{2}-2 x+1-1\right)+1 \\
& \longrightarrow\left[\frac{1}{2}(-2)\right]^{2}=(-1)^{2}=1 \\
& =2\left(x^{2}-2 x+1\right)+2(-1)+1 \\
& =2\left(x^{2}-2 x+1\right)-2+1 \\
& =2(x-1)^{2}-1
\end{aligned}
$$

The vertex of the parabola is $(1,-1)$.

Find the vertex of a vertical parabola.

$$
\begin{aligned}
& \text { Vertex Formula } \\
& \text { The graph of the quadratic function defined by } \\
& f(x)=a x^{2}+b x+c(a \neq 0) \text { has vertex }\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right), \\
& \text { and the axis of the parabola is the line } x=\frac{-b}{2 a} .
\end{aligned}
$$

$$
f(x)=-2 x^{2}+3 x-1
$$

Solution:

$a=-2, b=3$, and $c=-1$.
The x-coordinate: $\quad \frac{-b}{2 a}=\frac{-3}{2(-2)}=\frac{-3}{-4}=\frac{3}{4}$
The y-coordinate:

$$
f\left(\frac{3}{4}\right)=-2\left(\frac{3}{4}\right)^{2}+3\left(\frac{3}{4}\right)-1
$$

$$
=-2\left(\frac{9}{16}\right)+\left(\frac{9}{4}\right)-1
$$

$$
=-\frac{9}{8}+\frac{18}{8}-\frac{8}{8}=\frac{1}{8}
$$

$$
\text { The vertex of the parabola is }\left(\frac{3}{4}, \frac{1}{8}\right) \text {. }
$$

Graph a quadratic function.

Graphing a Quadratic Function $y=f(x)$
Step 1 Determine whether the graph opens up or down. If $a>0$, the parabola opens up; if $a<0$, it opens down.

Step 2 Find the vertex. Use either the vertex formula or completing the square.

Step 3 Find any intercepts. To find the x-intercepts (if any), solve $f(x)=0$. To find the y-intercept, evaluate $f(0)$.

Step 4 Complete the graph. Plot the points found so far. Find and plot additional points as needed, using symmetry about the axis.

\section*{| CLASSROOM | |
| :--- | :--- |
| EXAMPLE 4 | Graphing a Quadratic Function |}

Graph $f(x)=x^{2}-6 x+5$. Give the vertex, axis, domain, and range. Solution:
Step 1 The graph opens up since $a=1$, which is >0.
Step 2 Find the vertex. Complete the square.

$$
\begin{aligned}
f(x) & =x^{2}-6 x+5 \\
& =x^{2}-6 x+9-9+5 \\
& =(x-3)^{2}-4
\end{aligned}
$$

The vertex is at $(3,-4)$.

$$
\begin{aligned}
& \begin{array}{l}
\text { CLASSROOM } \\
\text { EXAMPLE } 4
\end{array} \text { Graphing a Quadratic Function (cont'd) } \\
& \text { Graph } f(x)=x^{2}-6 x+5 \\
& \text { Step } 3 \text { Find any } x \text {-intercepts. Let } f(x)=0 \\
& \qquad \begin{array}{c}
0=x^{2}-6 x+5 \\
0=(x-5)(x-1) \\
\qquad x-5=0 \quad \text { or } \quad x-1=0 \\
x=5 \quad \text { or } \quad x=1
\end{array}
\end{aligned}
$$

The x-intercepts are $(5,0)$ and $(1,0)$
Find the y-intercept. Let $x=0$

The y-intercept is $(0,5)$.

$$
f(x)=0^{2}-6(0)+5=5
$$

Objective 3

Use the discriminant to find the number of x-intercepts of a parabola with a vertical axis.

EXAMPLE 4
Graphing a Quadratic Function (cont'd)
Graph $f(x)=x^{2}-6 x+5$.

Step 4 Plot the points.
Vertex: $(3,-4)$
x-intercepts: $(5,0)$ and $(1,0)$
y-intercept. $(0,5)$
axis of symmetry: $x=3$
By symmetry $(6,5)$ is also
another point on the graph.
domain: $(-\infty, \infty) \quad$ range: $[-4, \infty)$

CLASSROOM
 EXAMPLE 5
 Find the discriminant and use it to determine the number of x-intercepts

 of the graph of the quadratic function.$f(x)=-3 x^{2}-x+2$
Solution:
$a=-3, b=-1, c=2$

$$
\begin{aligned}
b^{2}-4 a c & =(-1)^{2}-4(-3)(2) \\
& =1+24 \\
& =25
\end{aligned}
$$

The discriminant is positive, the graph has two x-intercepts
Find the discriminant and use it to determine the number of x-intercepts of the graph of each quadratic function.

$$
f(x)=x^{2}-x+1
$$

Solution:
$a=1, b=-1, c=1$
$b^{2}-4 a c=(-1)^{2}-4(1)(1)$
The discriminant is negative, the graph $=1-4$ has no x-intercepts.
$=-3$

$$
f(x)=x^{2}-8 x+16
$$

$$
a=1, b=-8, c=16
$$

$$
b^{2}-4 a c=(-8)^{2}-4(1)(16)
$$

$$
\begin{array}{ll}
=64-64 & \\
=0 & \\
=\text { one discrimina } x \text {-intercept }
\end{array}
$$

Slide 9.6-14

Use quadratic functions to solve problems involving maximum or minimum value.

PROBLEM-SOLVING HINT

In many applied problems we must find the greatest or least value of some quantity. When we can express that quantity in terms of a quadratic function, the value of k in the vertex (h, k) gives that optimum value.

CLASSROOM EXAMPLE 6

A farmer has 100 ft of fencing to enclose a rectangular area next to a building. Find the maximum area he can enclose, and the dimensions of the field when the area is maximized.

Solution:

Let $x=$ the width of the field

$$
\begin{aligned}
x+x+\text { length } & =100 \\
2 x+\text { length } & =100 \\
\text { length } & =100-2 x
\end{aligned}
$$

CLASSROOM

The vertex shows that the maximum area will be 1250 square feet.

The area will occur if the width, x, is 25 feet and the length is $100-2 x$, or 50 feet.

\section*{| CLASSROOM | Finding the Maximum Height Attained by a Projectile |
| :---: | :--- |
| EXAMPLE 7 | |}

A toy rocket is launched from the ground so that its distance above the ground after t seconds is

$$
s(t)=-16 t^{2}+208 t
$$

Find the maximum height it reaches and the number of seconds it takes to reach that height.

Solution:

Find the vertex of the function.
$a=-16, b=208$

$$
x=\frac{-b}{2 a}=\frac{-208}{2(-16)}=\frac{13}{2}=6.5
$$

$$
\begin{aligned}
f\left(\frac{13}{2}\right) & =-16\left(\frac{13}{2}\right)^{2}+208\left(\frac{13}{2}\right) \\
& =-16\left(\frac{169}{4}\right)+1352 \\
& =-676+1352 \\
& =676
\end{aligned}
$$

The toy rocket reaches a maximum height of 676 feet in 6.5 seconds.

Graph parabolas with horizontal axes.

Graph of a Horizontal Parabola

The graph of $\boldsymbol{x}=\boldsymbol{a} \boldsymbol{y}^{\mathbf{2}}+\boldsymbol{b} \boldsymbol{y}+\boldsymbol{c}$ or $\boldsymbol{x}=\boldsymbol{a}(\boldsymbol{y}-\boldsymbol{k})^{\mathbf{2}} \boldsymbol{+} \boldsymbol{h}$ is a parabola.

The vertex of the parabola is (h, k)

The axis is the horizontal line $y=k$.
The graph opens to the right if $a>0$ and to the left if $a<0$.

CLASSROOM	Graphing a Horizontal Parabola $(a=1)$
EXAMPLE 8	

Graph $x=(y+1)^{2}-4$. Give the vertex, axis, domain, and range.
Solution:
Vertex: $(-4,-1)$
Opens: right since $a>1$
Axis: $y=-1$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-3	0
-3	-2
0	1
0	-3

Graph parabolas with horizontal axes.


```
9.7 Polynomial and Rational Inequalities
Objectives
1 Solve quadratic inequalities.
2 Solve polynomial inequalities of degree 3 or greater.
3 Solve rational inequalities.
```


Solve quadratic inequalities.

Quadratic Inequality

A quadratic inequality can be written in the form

$$
\begin{aligned}
& a x^{2}+b x+c<0 \text { or } a x^{2}+b x+c>0 \\
& a x^{2}+b x+c \leq 0 \text { or } a x^{2}+b x+c \geq 0
\end{aligned}
$$

where a, b, and c are real numbers, with $a \neq 0$.

```
# CLASSROOM Solving Quadratic Inequalities by Graphing (cont'd)
solve each quadratic inequality
Use the graph to solve each quadratic inequality.
x + 6x+8<0
Solution:
Find the x-intercepts.
    x}+6x+8=
    (x+2)(x+4)=0
    x+2=0 or }x+4=
        x=-2 or }x=-
    Notice from the graph that x-values between -4 and -2 result in
    y-values less than 0
    The solution set is (-4,-2).
```

Solve and graph the solution set.
$2 x^{2}+3 x \geq 2$

Solution:

Use factoring to solve the quadratic equation

$$
\begin{gathered}
2 x^{2}+3 x-2=0 \\
(2 x-1)(x+2)=0 \\
2 x-1=0 \quad \text { or } \quad x+2=0 \\
x=\frac{1}{2} \quad \text { or } \quad x=-2
\end{gathered}
$$

The numbers divide a number line into three intervals.

CLASSROOM
Choose a number from each interval
to substitute in the inequality.

Interval A: Let $x=-3$.

$$
\begin{aligned}
2(-3)^{2}+3(-3) & \geq 2 \\
18-9 & \geq 2 \\
9 & \geq 2 \quad \text { True }
\end{aligned}
$$

Interval B: Let $x=0$.

$$
\begin{aligned}
2(0)^{2}+3(0) & \geq 2 \\
0+0 & \geq 2 \\
0 & \geq 2 \quad \text { False }
\end{aligned}
$$

CLASSROOM	Solving a Quadratic Inequality Using Test Numbers (cont'd)
EXAMPLE 2	

Interval C: Let $x=1$. $2 x^{2}+3 x \geq 2$

$$
\begin{aligned}
2(1)^{2}+3(1) & \geq 2 \\
2+3 & \geq 2 \\
5 & \geq 2 \quad \text { True }
\end{aligned}
$$

The numbers in Intervals A and C are solutions. The numbers -2 and $1 / 2$ are included because of the \geq.

Solution set:

$$
(-\infty,-2] \cup\left[\frac{1}{2}, \infty\right)
$$

Solve quadratic inequalities.

```
Solving a Quadratic Inequality
    Step 1 Write the inequality as an equation and solve it.
    Step 2 Use the solutions from Step 1 to determine intervals. Graph the
        numbers found in Step I on a number line. These numbers divide the number line into intervals.
Step 3 Find the intervals that satisfy the inequality. Substitute a test number from each interval into the original inequality to determine the intervals hat satisfy the inequality. All numbers in those intervals are in the solution set. A graph of the solution set will usually look like one of these. (Square brackets might be used instead of parentheses.)
```

$$
\longleftrightarrow \quad \longleftrightarrow
$$

Step 4 Consider the endpoints separately. The numbers from Step 1 are included in the solution set if the inequality symbol is \leq or \geq; they are not included if it is $<$ or $>$

CLASSROOM Solving Special Cases

Solve
Solution:
$(3 x-2)^{2}>-2$
The square of any real number is always greater than or equal to 0 , so any real number satisfies this inequality. The solution set is the set of all real numbers, $(-\infty, \infty)$.
$(3 x-2)^{2}<-2$
The square of a real number is never negative, there is no solution for this inequality. The solution set is \varnothing.

Objective 2

Solve polynomial inequalities of degree 3 or greater.

CLASSROOM Solving a Third-Degree Polynomial Inequality EXAMPLE 4

Solve and graph the solution set.
$(2 x+1)(3 x-1)(x+4)>0$

Solution:

Set each factored polynomial equal to 0 and solve the equation

$$
\begin{aligned}
& (2 x+1)(3 x-1)(x+4)=0 \\
& 2 x+1=0 \text { or } 3 x-1=0 \text { or } x+4=0 \\
& x=-\frac{1}{2} \quad x=\frac{1}{3} \quad x=-4 \\
& \text { Interval A Interval B Interval Interval D }
\end{aligned}
$$

CLASSROOM EXAMPLE 4
Substitute a test number from each interval in the original inequality.

Interval	Test Number	Test of Inequality	True or False?
A	-5	$-144>0$	False
B	-2	$42>0$	True
C	0	$-4>0$	False
D	1	$30>0$	True

The numbers in Intervals B and D, not including the endpoints are olutions

Solution set

$$
\begin{aligned}
& \left(-4, \frac{-1}{2}\right) \cup\left(\frac{1}{3}, \infty\right)
\end{aligned}
$$

Objective 3

Solve rational inequalities.

Solve rational inequalities.

Solving a Rational Inequality

Step 1 Write the inequality so that 0 is on one side and there is a single fraction on the other side.

Step 2 Determine the numbers that make the numerator or denominator equal to 0 .

Step 3 Divide a number line into intervals. Use the numbers from Step 2.

Step 4 Find the intervals that satisfy the inequality. Test a number from each interval by substituting it into the original inequality.

Step 5 Consider the endpoints separately. Exclude any values that make the denominator 0 .

Write the inequality so that 0 is on one side.

$$
\begin{aligned}
& \frac{2}{x-4}-3<0 \\
& \frac{2}{x-4}-\frac{3(x-4)}{x-4}<0 \begin{array}{l}
\text { The number 14/3 makes the numerator } \\
\frac{2-3 x+12}{x-4}
\end{array}<0 \quad \begin{array}{l}
\text { O, and 4 makes the denominator 0. } \\
\text { These two numbers determine three } \\
\text { intervals. }
\end{array} \\
& \frac{-3 x+14}{x-4}<0 \\
& \text { Slide 9.7-15 }
\end{aligned}
$$

CLASSROOM
Solve and graph the solution set.
$\frac{x+2}{x-1} \leq 5$
Solution:
Write the inequality so that 0 is on one side.

$$
\begin{aligned}
\frac{x+2}{x-1}-5 & \leq 0 \\
\frac{x+2}{x-1}-\frac{5(x-1)}{x-1} & \leq 0 \\
\frac{x+2-5 x+5}{x-1} & \leq 0 \\
\frac{-4 x+7}{x-1} & \leq 0
\end{aligned}
$$

The number $7 / 4$ makes the

$$
\text { numerator } 0 \text {, and } 1 \text { makes the }
$$

$$
\text { denominator } 0 \text {. These two numbers }
$$ denominator 0 . These two

determine three intervals.

CLASSROOM EXAMPLE 6	Solving a Rational Inequality (cont'd)		
Test a number from each interval.			
Interval Test Number Test of Inequality True or False? A 0 $-2 \leq 5$ $\frac{x+2}{x-1} \leq 5$ B $3 / 2$ $7 \leq 5$ True C 2 $4 \leq 5$ Trulse		$.$	
:---			

The numbers in Intervals A and C are solutions. 1 is NOT in the solution set (since it makes the denominator 0), but $7 / 4$ is.

Solution set:

