

CLASSROOM EXAMPLE 4	Extending the	Square Root Property (cont'd)
Check:		
(7-3)	$v^2 = 16$	$(-1-3)^2 = 16$
4	$^{2} = 16$	$-4^2 = 16$
10	6=16	16 = 16
	True	True
The solution set is	s {-1,7}.	
		Slide

CLASSROOM
EXAMPLE 5Extending the Square Root PropertySolution:
$$3x+1=\sqrt{2}$$
 or $3x+1=-\sqrt{2}$ $3x=-1+\sqrt{2}$ $3x=-1+\sqrt{2}$ $x=\frac{-1+\sqrt{2}}{3}$ Consider 0.2012 2008 2001 Persons Education for

CLASSROOM EXAMPLE 9	Solve for	Nonreal	Complex Solutions	6
Solve the equation	n.			
Sol	ution:			
$x^2 = -17$				
<i>x</i> =	√-17	or	$x = -\sqrt{-17}$	
x	$=i\sqrt{17}$	or	$x = -i\sqrt{17}$	
The solution set is	$=\left\{\pm i\sqrt{17}\right\}$	}.		
Copyright © 2012, 2008, 2004, Pea	rson Education Inc.			Slide 9.1-2

CLASSROOM EXAMPLE 9	Solve for	⁻ Nonreal	Complex Solutions (cont	'd)	
Solve the equation	on.				
Solution:					
$(x+5)^2 = -100$)				
x + 5 = -	√-100	or	$x + 5 = -\sqrt{-100}$		
<i>x</i> +	5 = 10i	or	x + 5 = -10i		
<i>x</i> = -	-5 + 10i	or	x = -5 - 10i		
The solution set is $\{-5\pm 10i\}$.					
overight @ 2012 2008 2004 Pe	urson Education Inc.			Slide 9.1	

CLASSROOM EXAMPLE 9	Solve for Nonreal Complex Solutions (cor	ıt'd)
$x - \frac{3}{2} =$	$\sqrt{-\frac{3}{20}}$ or $x - \frac{3}{2} = -\sqrt{-\frac{3}{20}}$	
$x - \frac{3}{2} = \frac{i\sqrt{2}}{\sqrt{2}}$	$\frac{\sqrt{3}}{20} \cdot \frac{\sqrt{5}}{\sqrt{5}}$ or $x - \frac{3}{2} = \frac{-i\sqrt{3}}{\sqrt{20}} \cdot \frac{\sqrt{5}}{\sqrt{5}}$	
$x-\frac{3}{2}$	$=\frac{i\sqrt{15}}{10}$ or $x-\frac{3}{2}=\frac{-i\sqrt{15}}{10}$	
$x = \frac{3}{2}$	$+\frac{i\sqrt{15}}{10}$ or $x = \frac{3}{2} - \frac{i\sqrt{15}}{10}$	
The solution set is	$= \left\{ \frac{3}{2} \pm \frac{\sqrt{15}}{10} i \right\}.$	
Copyright © 2012, 2008, 2004 Pear	son Education. Inc.	Slide 9.1- 24

	Discri	minant
he nte	e discriminant of $ax^2 + bx + c =$ egers, then the number and typ pws.	0 is b² – 4<i>ac</i>. If <i>a</i> , <i>b</i> , and <i>c</i> ar e of solutions are determined
	Discriminant	Number and Type of Solutions
	Positive, and the square of an integer	Two rational solutions
	Positive, but not the square of an integer	Two irrational solutions
	Zero	One rational solution

CLASSROOM EXAMPLE 4	Using the Disc	riminant (cont'd)
Find each discrim solutions for each by factoring or wh	inant. Use it to pr equation. Tell whether the quadra	edict the number and type of nether the equation can be solved tic formula should be used.
$3x^2 - x =$	= 7	$16x^2 + 25 = 40x$
Solution:		$16x^2 - 40x + 25 = 0$
$3x^2 - x - 7$	= 0	<i>a</i> = 16, <i>b</i> = -40, <i>c</i> = 25
$b^2 - 4ac = (-1)$	$)^2 - 4(3)(-7)$	$b^2 - 4ac = (-40)^2 - 4(16)(25)$
=1+8	34	=1600 - 1600
= 85		= 0
There will be two solutions. Solve b quadratic formula	irrational y using the	There will be one rational solution. Solve by factoring.
Copyright © 2012, 2008, 2004 Pea	rson Education. Inc.	Slide 9.2- 15

CLASSROOM EXAMPLE 5	Using the Discriminant
Find k so that the $x^2 - kx + 64 = 0$	equation will have exactly one rational solution.
Solution:	
	$b^2 - 4ac = (-k)^2 - 4(1)(64)$
	$=k^{2}-256$
	$k^2 - 256 = 0$
	$k^2 = 256$
	k = 16 or $k = -16$
There will be only	on rational solution if $k = 16$ or $k = -16$.
Copyright © 2012, 2008, 2004. Pear	son Education. Inc.

METHODS FOR SOLVING QUADRATIC EQUATIONS					
Method	Advantages	Disadvantages			
Factoring	This is usually the fastest method.	Not all polynomials are factorable; some factorable polynomials are difficult to factor			
Square root property	This is the simplest method for solving equations of the form $(ax+b)^2 = c$.	Few equations are given in this form.			
Completing the square	This method can always be used, although most people prefer the quadratic formula.	It requires more steps than other methods.			
Quadratic formula	This method can always be used.	It is more difficult than factoring because of the square root, although calculators can simplify its use.			

 Objective 1

 Solve an equation with fractions by writing it in quadratic form.

EXAMPLE 2	Solving	a Motion Pro	oblem		
n 1 ¾ hr Cody r f the current is	ows his bo 3 mph. Ho	at 5 mi uprive w fast does C	r and comes ody row?	s bac	k. The rate
Solution:					
Step 1 Read the	problem o	carefully.			
VEU Z ASSION I					
Make a t	able. Use a	t = d/r.	t		iow.
Make a ta	able. Use a d	$\frac{r}{x-3}$	<u>t</u>) can	Times in

CLASSROOM EXAMPLE 2	Solving a Motion Problem (cont'd)	
20	$x + 60 + 20x - 60 = 7\left(x^2 - 9\right)$	
	$40x = 7x^2 - 63$	
	$0 = 7x^2 - 40x - 63$	
	0 = (7x+9)(x-7)	
	7x + 9 or $x - 7$	
	$x = -\frac{9}{7} \text{or} x = 7$	
Step 5 State the rows at th	answer. The speed cannot be negative, so Code e speed of 7mph.	/
Step 6 Check that	at this value satisfies the original problem.	
Convright © 2012, 2008, 2004, Pea	rson Education. Inc	Slide 9.3-

EXAMPLE	Solvi	ng a Work Problem					
Two chefs are preparing a banquet. One chef could prepare the banquet in 2 hr less time than the other. Together, they complete the job in 5 hr. How long would it take the faster chef working alone?							
Solution:							
Step 1 Read	the probler	n carefully.					
Step 2 Assi x – 2	gn the varia = the fast cl Rate	able. Let x = the slow ch hef's time alone. Time working	hef's time alone. Then,				
		Together	of the Job Done				
	1	-					
Slow	$\frac{1}{x}$	5	$\frac{5}{x}$				

CLASSROOM EXAMPLE 3	Solving a Work Problem (cont'd)	
Step 3 Write an	equation. Since together they complete 1 job,	
	$\frac{5}{x} + \frac{5}{x-2} = 1.$	
Step 4 Solve the	equation. Multiply each side by the LCD, $x(x-2)$.	
$x(x-2)\left(\frac{5}{x}\right)$	$+x(x-2)\left(\frac{5}{x-2}\right)=x(x-2)(1)$	
	5(x-2) + 5x = x(x-2)	
	$5x - 10 + 5x = x^2 - 2x$	
	$0 = x^2 - 12x + 10$	
Copyright © 2012, 2008, 2004 Pea	rson Education. Inc. Slide 9.	3- 12

CLASSROOM EXAMPLE 6	Solving Eq	quations that Are Quadratic in Form (cont'd)	
To find x, substitu	ite x ² for y.		
x	$a^{2} = 4$ = +2	or $x^2 = \frac{1}{9}$ or $x = \pm \frac{1}{7}$	
Check 144-14	18 + 4 = 0	$\frac{1}{9} - \frac{37}{9} + 4 = 0$	
	0 = 0	0 = 0	
	True	True	
The solution set is	$ s \left\{ \pm \frac{1}{3}, \pm 2 \right\} $	2}.	
Copyright © 2012, 2008, 2004, Pea	rson Education Inc	Slide 9.	.3- 22

CLASSROOM
EXAMPLE 7Solving Equations That Are Quadratic in FormSolve. $5(x+3)^2 + 9(x+3) = 2$ Solution:Let y = x + 3, so the equation becomes: $5y^2 - 9y = 2$ (5y-1)(y+2) = 05y - 1 = 0 or y + 2 = 0 $y = \frac{1}{5}$ or y = -2Eleventies 0.202, 2008, 2004 Persons Education for

CLASSROOM EXAMPLE 7	Solving E	Equations Th	at Are Quadratic in Form (c	ont'd)
To find x, substitu	ite x + 3 fo	r <i>y</i> .		
<i>x</i> +	$3 = \frac{1}{5}$	or	x + 3 = -2	
<i>x</i> =	$=-\frac{14}{5}$	or	x = -5	
Check $\frac{1}{5}$	$+\frac{9}{5}=2$		20 - 18 = 2	
	2 = 2		Z = Z	
	True		True	
The solution set i	s {-5,-	$\left\{\frac{14}{5}\right\}$.		
Commight @ 2012 2008 2004 Res	mon Education Inc			Slide 9.3- 27

CLASSROOM EXAMPLE 7	Solving Equations That Are Quadratic in Form	(cont'd)
Solve.		
$4x^{2/3} = 3x^{1/3} + $	+1	
Solution:		
Let $y = x^{1/3}$, so y^2	$=(x^{1/3})^2 = x^{2/3}.$	
	$4y^2 = 3y + 1$	
	$4y^2 - 3y - 1 = 0$	
	(4y+1) = 0 or $(y-1) = 0$	
	4y + 1 = 0 or $y - 1 = 0$	
	$y = -\frac{1}{4}$ or $y = 1$	
Convright @ 2012 2008 2004 Pea	arson Education Inc	Slide 9.3- 28

CLASSROOM EXAMPLE 1	Solving for Variab	les Involving Squares or Square Roots (cont	d)
Solve the formula f Solve $s = 30\sqrt{2}$ Solution:	$\frac{a}{p}$ for <i>a</i> .	ariable.	
$s^2 = s^2$	$900 \cdot \frac{a}{p}$	Square both sides.	
$ps^2 =$	900 <i>a</i>	Multiply by <i>p</i> .	
$\frac{ps^2}{900} =$	а	Divide by 900.	
anvright © 2012, 2008, 2004, Pearso	n Education Inc		Slide 9.4-

CLASSROOM EXAMPLE 3	Using the Pythagorean Theorem
A ladder is leanin the ladder to the l the ground is 1 ft ladder?	g against a house. The distance from the bottom of nouse is 5 ft. The distance from the top of ladder to less than the length of the ladder. How long is
Solution:	
Step 1 Read the	problem carefully.
Step 2 Assign th	ne variable.
Let x = the from the t	e length of the ladder. Then, $x - 1 =$ the distance op of the ladder to the ground.

© 2012 2008 2004 Pearson Education Inc

CLASSROOM
EXAMPLE 3
 Using the Pythagorean Theorem (cont'd)

 Step 3 Write an equation.

 The wall of the house is perpendicular to the ground, so this is a right triangle. Use the Pythagorean formula.

$$a^2 + b^2 = c^2$$
 $5^2 + (x-1)^2 = x^2$

 Step 4 Solve.

 $25 + x^2 - 2x + 1 = x^2$
 $26 = 2x$
 $13 = x$

 Creative 0.2012 2006 2004. Preven Education. In:

Slide 9.4- 7

EXAMPLE 5	Solving an Applied Problem Using a Quadratic Function
A ball is projected the ground at t se be 32 feet from th	d upward from the ground. Its distance in feet from conds is $s(t) = -16\ell^2 + 64t$. At what time will the ball be ground?
Solution:	
	$s(t) = -16t^2 + 64t$
	$32 = -16t^2 + 64t$
	$16t^2 - 64t + 32 = 0$
	$t^2 - 4t + 2 = 0$

Graph parabolas with horizontal and vertical shifts.

Vertical Shift

The graph of $F(x) = x^2 + k$ is a parabola.

The graph has the same shape as the graph of $f(x) = x^2$.

The parabola is shifted k units up if k > 0, and |k| units down if k < 0.

Slide 9.

The vertex is (0, k).

Graph parabolas with horizontal and vertical shifts. Horizontal Shift The graph of $F(x) = (x - h)^2$ is a parabola. The graph has the same shape as the graph of $f(x) = x^2$. The parabola is shifted h units to the right if h > 0, and |h| units to the left if h < 0. The vertex is (h, 0).

	Vertex and Axis of Parabola
The graph of	$f F(x) = (x - h)^2 + k$ is a parabola.
□The graph	has the same shape as the graph of $f(x) = x^2$.
The vertex	t of the parabola is (h, k) .
□The axis is	the vertical line $x = h$.

Use the coefficient of x^2 to predict the shape and direction in which a parabola opens.

Slide 9.5- 1

Use the coefficient of x^2 to predict the shape and direction in which a parabola opens. General Principles of $F(x) = a(x - h)^2 + k \ (a \neq 0)$ 1. The graph of the quadratic function defined by $F(x) = a(x - h)^2 + k, a \neq 0$, is a parabola with vertex (*h*, *k*) and the vertical line x = h as axis. 2. The graph opens up if *a* is positive and down if *a* is negative. 3. The graph is wider than that of $f(x) = x^2$ if 0 < |a| < 1. The graph is narrower than that of $f(x) = x^2$ if |a| > 1.

Slide 9.5- 1

CLASSROOM EXAMPLE 4	Graphing a Quadratic Function (cont'd)	
Graph $f(x) = x^2 - x^2$	6x + 5.	
Step 3 Find any	<i>x</i> -intercepts. Let <i>f</i> (<i>x</i>) = 0	
	$0 = x^2 - 6x + 5$	
	0 = (x-5)(x-1)	
x	x - 5 = 0 or $x - 1 = 0$	
	x = 5 or $x = 1$	
The x-intercepts	are (5, 0) and (1, 0).	
Find the y-interce	ept. Let $x = 0$.	
The y-intercept is	s (0, 5).	
	$f(x) = 0^2 - 6(0) + 5 = 5$	
Copyright @ 2012_2008_2004_Per	arson Education. Inc	Slide 9

Use quadratic functions to solve problems involving maximum or minimum value. PROBLEM-SOLVING HINT

In many applied problems we must find the greatest or least value of some quantity. When we can express that quantity in terms of a quadratic function, the value of k in the vertex (h, k) gives that optimum value.

Slide 2.3- 1

CLASSROOM
EXAMPLE 7Finding the Maximum Height Attained by a ProjectileA toy rocket is launched from the ground so that its distance above
the ground after t seconds is
$$s(t) = -16\ell + 208t$$
Find the maximum height it reaches and the number of seconds it
takes to reach that height.Solution:
 $a = -16, b = 208$ $x = \frac{-b}{2a} = \frac{-208}{2(-16)} = \frac{13}{2} = 6.5$

Slide 9.6- 19

CLASSROOM
EXAMPLE 7
 Finding the Maximum Height Attained by a Projectile (cont'd)

 Find the y-coordinate.

$$f\left(\frac{13}{2}\right) = -16\left(\frac{13}{2}\right)^2 + 208\left(\frac{13}{2}\right)$$

 $= -16\left(\frac{169}{4}\right) + 1352$
 $= -676 + 1352$
 $= 676$

 The toy rocket reaches a maximum height of 676 feet in 6.5 seconds.

CLASSROOI EXAMPLE 4	Solving a	Third-Degree Polynom	nial Inequality (co
ubstitute a te	est number from	each interval in the	original inequal
Interval	Test Number	Test of Inequality	True or False?
А	-5	-144 > 0	False
В	-2	42 > 0	True
С	0	-4 > 0	False
D	1	30 > 0	True
e numbers lutions. lution set:	in Intervals B a	nd D, not including th	e endpoints are
	(-4, -2)	$\left(\frac{1}{3},\infty\right)$	
-5 -4.5 -	4 -3.5 -3 -2.5 2 -1.5	-1 -0.5 0 0.5 1 1.5 2 2.5	3 3.5 4 4.5 5
br @ 2012 2008 200	4 Pearson Education Inc.		

Interval	Test Number	Test of Inequality	True or False?	<i>x</i> – 4
А	0	-1/2 < 3	True	
В	13/3	6 < 3	False	
С	5	2 < 3	True	
C The solutic endpoints. Solution se	5 on set includes r	2 < 3 numbers in Interva	True als A and C, exclu	ding

