How to find the area between two curves within $a \le x \le b$

Step 1) Find the points of intersections between 2 curves.

Step 2) Graph both functions

Step 3) Within $a \le x \le b$ and intersections points see how many different areas you have and which one is at the op and which one is a the bottom?

Step 4) Construct the integral for the number of observable areas knowing that for each area we have to express the **function of top area** <u>minus</u> **the function of the bottom area** with appropriate limits

Find the area between $f(x) = x^2$ and g(x) = x bounded by $0 \le x \le 2$

Step 1) Find the points of intersections between 2 curves.

$$f(x) = x^2 = g(x) = x$$
 $\rightarrow x^2 = x$ $\rightarrow x^2 - x = 0$ $x = 1, x = 0$

Step 2) Graph both functions

Step 3) Within $0 \le x \le 1$ g(x) = x is at the top and $f(x) = x^2$ at the bottom and within $1 \le x \le 2$

$$f(x) = x^2$$
 is at the top and $g(x) = x$ at the bottom,
Step 4) $\int_0^1 [g(x) - f(x)] dx + \int_1^2 [f(x) - g(x)] = \frac{1}{6} + \frac{5}{6} = 1$

Area Between Curves

For each problem, find the area of the region enclosed by the curves.

1)
$$y = 2x^{2} - 8x + 10$$

 $y = \frac{x^{2}}{2} - 2x - 1$
 $x = 1$
 $x = 3$

2)
$$x = 2y^{2} + 12y + 19$$

 $x = -\frac{y^{2}}{2} - 4y - 10$
 $y = -3$
 $y = -2$

3)
$$y = \frac{x^2}{2} - 3x - \frac{1}{2}$$

 $y = 3$

4)
$$y = -\frac{x^3}{2} + 2x^2$$

 $y = -x^2 + 4x$

For each problem, find the area of the region enclosed by the curves. You may use the provided graph to sketch the curves and shade the enclosed region.

5)
$$y = -2x^{2} - 1$$
$$y = -x + 3$$
$$x = 0$$
$$x = 1$$

$$6) \quad y = 2\sqrt[3]{x^2}$$
$$y = x$$

8)
$$y = -2 \cdot \sec^2 x$$
$$y = 2\cos x$$
$$x = 0$$
$$x = \frac{\pi}{2}$$

Area Between Curves

For each problem, find the area of the region enclosed by the curves.

1)
$$y = 2x^{2} - 8x + 10$$

 $y = \frac{x^{2}}{2} - 2x - 1$
 $x = 1$
 $x = 3$

$$\int_{1}^{3} \left(2x^{2} - 8x + 10 - \left(\frac{x^{2}}{2} - 2x - 1 \right) \right) dx$$

$$= 11$$

3)
$$y = \frac{x^2}{2} - 3x - \frac{1}{2}$$

 $y = 3$

$$\int_{-1}^{7} \left(3 - \left(\frac{x^2}{2} - 3x - \frac{1}{2} \right) \right) dx$$
$$= \frac{128}{3} \approx 42.667$$

2)
$$x = 2y^{2} + 12y + 19$$

 $x = -\frac{y^{2}}{2} - 4y - 10$
 $y = -3$
 $y = -2$

$$\int_{-3}^{-2} \left(2y^2 + 12y + 19 - \left(-\frac{y^2}{2} - 4y - 10 \right) \right) dy$$
$$= \frac{29}{6} \approx 4.833$$

4)
$$y = -\frac{x^3}{2} + 2x^2$$

 $y = -x^2 + 4x$

$$\int_{0}^{2} \left(-x^{2} + 4x - \left(-\frac{x^{3}}{2} + 2x^{2} \right) \right) dx +$$

$$\int_{2}^{4} \left(-\frac{x^{3}}{2} + 2x^{2} - \left(-x^{2} + 4x \right) \right) dx$$

For each problem, find the area of the region enclosed by the curves. You may use the provided graph to sketch the curves and shade the enclosed region.

5)
$$y = -2x^{2} - 1$$
$$y = -x + 3$$
$$x = 0$$
$$x = 1$$

$$\int_0^1 (-x + 3 - (-2x^2 - 1)) dx$$
$$= \frac{25}{6} \approx 4.167$$

$$6) \quad y = 2\sqrt[3]{x^2}$$
$$y = x$$

$$\int_0^8 (2\sqrt[3]{x^2} - x) dx$$
$$= \frac{32}{5} = 6.4$$

$$\int_{-2}^{0} (-x^2 - (-x^3 + 6x)) dx + \int_{0}^{3} (-x^3 + 6x + x^2) dx$$
$$= \frac{253}{12} \approx 21.083$$

8)
$$y = -2 \cdot \sec^{2} x$$
$$y = 2\cos x$$
$$x = 0$$
$$x = \frac{\pi}{4}$$

Create your own worksheets like this one with Infinite Calculus. Free trial available at KutaSoftware.com

Area Between Two Curves

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 6.1 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Be able to find the area between the graphs of two functions over an interval of interest.
- Know how to find the area enclosed by two graphs which intersect.

PRACTICE PROBLEMS:

1. Let R be the shaded region shown below.

- (a) Set up but do not evaluate an integral (or integrals) in terms of x that represent(s) the area of R.
- (b) Set up but do not evaluate an integral (or integrals) in terms of y that represent(s) the area of R.

For problems 2-4, compute the area of the shaded region.

2.

3.

4.

For problems 5-13, compute the area of the region which is enclosed by the given curves.

5.
$$y = 4x$$
, $y = 6x^2$

6.
$$y = 2x^2$$
, $y = x^2 + 2$

7.
$$y = x^{2/3}$$
, $y = x^4$, in the first quadrant

8.
$$y = \frac{1}{x}, y = \frac{1}{x^2}, x = 4$$

9.
$$y = \sin x$$
, $y = 2 - \sin x$, $\frac{\pi}{2} \le x \le \frac{5\pi}{2}$

10.
$$y = e^{5x}$$
, $y = e^{8x}$, $x = 1$

11.
$$x = 4 - y^2$$
, $x = y^2 - 4$

12.
$$y = x^4, y = |x|$$

13.
$$y = x^2, y = \frac{2}{x^2 + 1}$$