Intervals of Increasing \& Decreasing

Find the first derivative of the function, f .

Set the first derivative equal to zero and solve.

Determine whether the first derivative is undefined for any x-values.

Make sure these numbers are in the domain of the original function, f. If they are not, then the numbers are NOT critical points.

Plot these numbers on a number line and test the regions with the first derivative.

A positive result indicates the function is increasing on that interval.

A negative result indicates the function is decreasing on that interval.

Example 1: Determine intervals on which function $f(x)=x^{4}-4 x^{3}+4 x^{2}$ is increasing or decreasing.

Test the regions with the first derivative:
$f^{\prime}(-1)<0 \rightarrow f$ is decreasing on $(-\infty, 0)$
$f^{\prime}\left(\frac{1}{2}\right)>0 \quad \rightarrow f$ is increasing on $(0,1)$
$f^{\prime}(1.5)<0 \rightarrow f$ is decreasing on $(1,2)$
$f^{\prime}(3)>0 \quad \rightarrow f$ is increasing on $(2, \infty)$
$f^{\prime}(3)>0 \quad \rightarrow f$ is increasing on (2. ∞)
f is increasing on $(0,1) \cup(2, \infty)$
f is decreasing on $(-\infty, 0) \cup(1,2)$

Example 2: Determine the intervals on which the function $x \sqrt{x+3}$ is increasing or decreasing.

Plot the critical numbers on a number line and pick convenient numbers in those intervals. Start selecting numbers in the given intervals. Let's select a convenient number in the interval less than -3 . How about -4 ? Then, select a number in the interval -3 to -2 , how about -2.5 ? Finally pick a number in the interval greater than -2 , say 0 .

Test the regions with the first derivative:
$f^{\prime}(-4)$ is not real

$$
\begin{aligned}
& f^{\prime}(-2.5)<0 \rightarrow f \text { is decreasing on }(-3,-2) \\
& f^{\prime}(0)>0 \rightarrow f \text { is increasing on }(-2, \infty)
\end{aligned}
$$

