Equation of Tangent Line

Recall the equation of the tangent line of a curve $y=f(x)$ at the point $x=a$.

The general equation of the tangent line is

$$
y=L_{a}(x):=f(a)+f^{\prime}(a)(x-a) .
$$

That is the point-slope form of a line through the point ($a, f(a)$) with slope $f^{\prime}(a)$.

Linear Approximation

It follows from the geometric picture as well as the equation

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a)
$$

which means that $\frac{f(x)-f(a)}{x-a} \approx f^{\prime}(a)$ or

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)=L_{a}(x)
$$

for x close to a. Thus $L_{a}(x)$ is a good approximation of $f(x)$ for x near a.

If we write $x=a+\Delta x$ and let Δx be sufficiently small this becomes $f(a+\Delta x)-f(a) \approx f^{\prime}(a) \Delta x$. Writing also $\Delta y=\Delta f:=f(a+\Delta x)-f(a)$ this becomes

$$
\Delta y=\Delta f \approx f^{\prime}(a) \Delta x
$$

In words: for small Δx the change Δy in y if one goes from x to $x+\Delta x$ is approximately equal to $f^{\prime}(a) \Delta x$.

Visualization of Linear Approximation

Estimating the change in $f(x)$:

Example: a) Find the linear approximation of $f(x)=\sqrt{x}$ at $x=16$.
b) Use it to approximate $\sqrt{15.9}$.

Solution:

a) We have to compute the equation of the tangent line at $x=16$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} x^{1 / 2}=\frac{1}{2} x^{-1 / 2} \\
& f^{\prime}(16)=\frac{1}{2} 16^{-1 / 2}=\frac{1}{2} \cdot \frac{1}{\sqrt{16}}=\frac{1}{8} \\
& L(x)=f^{\prime}(a)(x-a)+f(a) \\
& =\frac{1}{8}(x-16)+\sqrt{16}=\frac{1}{8} x-2+4=\frac{1}{8} x+2
\end{aligned}
$$

b) $\sqrt{15.9}=f(15.9)$

$$
\approx L(15.9)=\frac{1}{8} \cdot 15.9+2=\frac{1}{8}(16-.1)+2=4-\frac{1}{80}=\frac{319}{80} .
$$

Example: Estimate $\cos \left(\frac{\pi}{4}+0.01\right)-\cos \left(\frac{\pi}{4}\right)$.

Solution:

Let $f(x)=\cos (x)$. Then we have to find $\Delta f=f(a+\Delta x)-f(a)$ for $a=\frac{\pi}{4}$ and $\Delta x=.01$ (which is small).

Using linear approximation we have:

$$
\begin{aligned}
\Delta f & \approx f^{\prime}(a) \cdot \Delta x \\
& =-\sin \left(\frac{\pi}{4}\right) \cdot .01 \quad\left(\text { since } f^{\prime}(x)=-\sin x\right) \\
& =-\frac{\sqrt{2}}{2} \cdot \frac{1}{100}=-\frac{\sqrt{2}}{200}
\end{aligned}
$$

Example: The radius of a sphere is increased from 10 cm to 10.1 cm . Estimate the change in volume.

Solution:

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \quad \text { (volume of a sphere) } \\
& \frac{\mathrm{d} V}{\mathrm{~d} r}=\frac{\mathrm{d}}{\mathrm{~d} r}\left(\frac{4}{3} \pi r^{3}\right)=\frac{4}{3} \pi \cdot 3 r^{2}=4 \pi r^{2} \\
& \Delta V \approx \frac{\mathrm{~d} V}{\mathrm{~d} r} \cdot \Delta r=4 \pi r^{2} \cdot \Delta r \\
& =4 \pi \cdot 10^{2} \cdot(10.1-10)=400 \pi \cdot \frac{1}{10}=40 \pi
\end{aligned}
$$

The volume of the sphere is increased by $40 \pi \mathrm{~cm}^{3}$.

Example: The radius of a disk is measured to be $10 \pm .1 \mathrm{~cm}$ (error estimate). Estimate the maximum error in the approximate area of the disk.

Solution:

$$
\begin{aligned}
& A=\pi r^{2} \quad \text { (area of a disk) } \\
& \frac{\mathrm{d} A}{\mathrm{~d} r}=\frac{\mathrm{d}}{\mathrm{~d} r}\left(\pi \cdot r^{2}\right)=2 \pi r \\
& \begin{aligned}
\Delta A & \approx \frac{\mathrm{~d} A}{\mathrm{~d} r} \cdot \Delta r=2 \pi r \cdot \Delta r \\
& =2 \pi \cdot 10 \cdot(\pm 0.1)= \pm 20 \pi \cdot \frac{1}{10}= \pm 2 \pi
\end{aligned}
\end{aligned}
$$

The area of the disk has approximately a maximal error of $2 \pi \mathrm{~cm}^{2}$.

Example: The dimensions of a rectangle are measured to be 10 ± 0.1 by 5 ± 0.2 inches.
What is the approximate uncertainty in the area measured?
Solution: We have $A=x y$ with $x=10 \pm 0.1$ and $y=5 \pm 0.2$.
We estimate the measurement error $\Delta_{x} A$ with respect to the variable x and the error $\Delta_{y} A$ with respect to the variable y.

$$
\begin{aligned}
& \frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{~d} x}(x y)=y \\
& \frac{\mathrm{~d} A}{\mathrm{~d} y}=\frac{\mathrm{d}}{\mathrm{~d} y}(x y)=x \\
& \Delta_{x} A \approx \frac{\mathrm{~d} A}{\mathrm{~d} x} \cdot \Delta x=y \cdot \Delta x \\
& \Delta_{y} A \approx \frac{\mathrm{~d} A}{\mathrm{~d} y} \cdot \Delta y=x \cdot \Delta y
\end{aligned}
$$

The total estimated uncertainty is:

$$
\begin{aligned}
& \Delta A=\Delta_{x} A+\Delta_{y} A=y \cdot \Delta x+x \cdot \Delta y \\
& \Delta A=5 \cdot(\pm .1)+10 \cdot(\pm .2)= \pm .5+ \pm 2.0= \pm 2.5
\end{aligned}
$$

The uncertainty in the area is approximately of 2.5 inches 2.

Differentials

Those are a the most murky objects in Calculus I. The way they are usually defined in in calculus books is difficult to understand for a Mathematician and maybe for students, too.

Remember that we have

$$
\frac{\Delta y}{\Delta x} \approx \frac{\mathrm{~d} y}{\mathrm{~d} x}=f^{\prime}(x)
$$

The idea is to consider $\mathrm{d} y$ and $\mathrm{d} x$ as infinitesimal small numbers such that $\frac{d y}{d x}$ is not just an approximation but equals $f^{\prime}(a)$ and one rewrites this as

$$
\mathrm{d} y=f^{\prime}(x) \cdot \mathrm{d} x
$$

This obviously makes no sense since the only "infinitesimal small number" which I know in calculus is 0 which gives the true but useless equation $0=f^{\prime}(x) \cdot 0$ and the nonsense equation $\frac{0}{0}=f^{\prime}(x)$.

So the official explanation is that

$$
\mathrm{d} y=f^{\prime}(x) \cdot \mathrm{d} x
$$

describes the linear approximation for the tangent line to $f(x)$ at the point x which gives indeed this equation. Then $d x$ and $d y$ are numbers satisfying this equation. One problem is that one does not like to keep x fixed and $f^{\prime}(x)$ varies with x. But how to understand the dependence of $\mathrm{d} x$ and $\mathrm{d} y$ on x ?

The symbolic explanation is that

$$
\mathrm{d} y=f^{\prime}(x) \cdot \mathrm{d} x
$$

is an equation between the old variable x and the new variables $\mathrm{d} x$ and $\mathrm{d} y$ but we never will plug in numbers for $\mathrm{d} x$ and $\mathrm{d} y$.

Note that $\frac{\mathrm{d} y}{\mathrm{~d} x}=f^{\prime}(x)$ makes sense with both interpretations for $\mathrm{d} x \neq 0$.

For applications (substitution in integrals) we will usually need the second interpretation

Example: Express $\mathrm{d} x$ in terms of $\mathrm{d} y$ for the function $y=e^{x^{2}}$.

Solution:

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=e^{x^{2}} \cdot 2 x \\
& \mathrm{~d} y=e^{x^{2}} \cdot 2 x \cdot \mathrm{~d} x \\
& \mathrm{~d} x=\frac{1}{e^{x^{2}} \cdot 2 x} \cdot \mathrm{~d} y=\frac{\mathrm{d} y}{2 x y}
\end{aligned}
$$

Do Now:

1. Write the simplest rule possible for each of the functions based solely on the graph.

$$
\begin{aligned}
& y_{1}=2 x \\
& y_{2}=2 \\
& y_{3}=-\frac{2}{3} x-1
\end{aligned}
$$

2. The above graphs are actually functions displayed on a zoomed in window. Match each graph with the correct function. Justify your answer.

$$
\begin{aligned}
& y=x^{3}+0.002 \quad y_{2}=2 \\
& y=-\frac{2}{3} x-0.001-y_{3}=-\frac{2}{3} x-1 \\
& y=\sin (2 x) \quad y_{1}=2 x
\end{aligned}
$$

3. What is the scale of the above graph? \qquad
4. Algebraically find the equation of the tangent line at $x=0$ for each function in question 2 .
$y^{\prime}=3 x^{2}$
$\left.y^{\prime}\right|_{0}=0$
$y=.002$$\quad(0, .002) \quad\left\{\begin{array}{l}y^{\prime}=-\frac{2}{3} \\ \left.y^{\prime}\right|_{0}=-\frac{2}{3} \quad(0,-001) \\ y=-\frac{2}{3} x-.001\end{array}\left\{\begin{array}{l}y^{\prime}=2 \cos (2 x) \\ \left.y^{\prime}\right|_{0}=2 \\ y=2 x\end{array} \quad(0,0)\right.\right.$

All differentiable curves are locally linear, since we can make the curve appear linear if we get close enough to a specific point. The tangent line provides a useful representation of the curve itself if we stay close enough to the point of tangency and creates the linear approximation at that point.

Class Work and Homework:

1. Graph the equation $y=\tan \left(\frac{x}{2}\right)$ on a zoom 4 decimal window. Zoom into a very small window. Write the equation of the line that can be used as the linear approximation (ie. the tangent line) for this function at $x=0$. Graph both in the same window.

$$
\begin{array}{ll}
y^{\prime}=\frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right) & \\
\left.y^{\prime}\right|_{x=0}=\frac{1}{2} & y-0=\frac{1}{2}(x-0) \\
y=\frac{1}{2} x
\end{array}
$$

2. Find the linearization of $f(x)=\sqrt{1+x}$ (i.e. the tangent line) at $x=0$ and use it to approximate $\sqrt{1.02}$ without a calculator. Then use a calculator to determine the accuracy of the approximation. Is your approximation an overestimation or an underestimation?

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{2 \sqrt{1+x}}=\frac{1}{2}(1+x)^{-1 / 2} \\
& \left.\begin{array}{l}
f^{\prime}(0)=\frac{1}{2} \\
f(0)=1
\end{array}\right\} \quad \begin{array}{r}
L(x)-1=\frac{1}{2}(x-0) \\
L(x)=\frac{1}{2} x+1
\end{array} \\
& \sqrt{1.02} \approx L(.02)=\frac{1}{2}(.02)+1=1.01 \\
& \sqrt{1.02}=f(.02)=1.009950494 \\
& f^{\prime \prime}(x)=-\frac{1}{4}(1+x)^{-3 / 2}=\frac{-1}{4\left(1+x^{3 / 2}\right)} \quad f^{\prime \prime}(0)=-\frac{1}{4}<0 \text { concave down (tangent line above curve) } \rightarrow \\
& \text { Overestimation }
\end{aligned}
$$

3. The slope of a function at any point (x, y) is $-\frac{x+1}{y}$. The point $(3,2)$ is on the graph of f.
(a) Write an equation of the line tangent to the graph of f at $x=3 . y-2=-2(x-3)$
(b) Use the tangent line in part (a) to approximate $f(3.1)$.
$y=-2 x+8$

$$
y^{\prime}=-\frac{x+1}{y}
$$

$\left.y^{\prime}\right|_{(3,2)}=-2$

$$
\begin{gathered}
L(3.1)=-2(3.1)+8=18 \\
f(3.1)=L(3.1)=1.8
\end{gathered}
$$

4. Let f be the function that is differentiable for all real numbers. The table below gives the values of f and its derivative for selected values in the interval $-0.9 \leq x \leq 0.9$. The second derivative is always positve, which means the function is concave up, on the same closed interval. Write an equation of the line tangent to the graph of f where $x=-0.6$. Use this line to approximate the value of $f(-0.5)$. Is this approximation greater or less than the actual value of $f(-0.5)$? Give a reason to support your answer.

x	-0.9	-0.6	-0.3	0	0.3	0.6	0.9
$f(x)$	-34	-87	-99	-100	-84	-51	21
$f^{\prime}(x)$	-69	-30	-9	0	1	9	90

$$
\begin{aligned}
y+87 & =-30(x+.6) \\
L(x) & =-30 x-105
\end{aligned} \quad f^{\prime \prime}(x)>0 \rightarrow \text { concave up (tangent line } \begin{aligned}
\text { below curve) }
\end{aligned}
$$

5. Find the linearization of $f(x)=\cos (x)$ at $x=\frac{\pi}{2}$ and use it to approximate $\cos (1.75)$ without a calculator. Then use a calculator to determine the accuracy of the approximation.
$f^{\prime}(x)=-\sin x$
$f^{\prime}\left(\frac{\pi}{2}\right)=-1$

$$
\begin{aligned}
& f(1.75)=L(1.75)=-1.75+\frac{\pi}{2}=-.179 \\
& f(1.75)=\cos (1.75)=-.178
\end{aligned}
$$

$$
\begin{array}{r}
y-0=-1\left(x-\frac{\pi}{2}\right) \\
L(x)=-x+\frac{\pi}{2}
\end{array}
$$

6. Use linearization to approximate (a) $\sqrt{123}$ and (b) $\sqrt[3]{123}$ without a calculator. Then compare the result to the actual value.
a) $\left.f^{\prime}(x)=\frac{1}{2 \sqrt{x}}\right\} \quad y-11=\frac{1}{22}(x-121)$

$$
f^{\prime}(\mid 21)=\frac{1}{22} \quad L(x)=\frac{1}{22}(x-121)+11
$$

$$
L(123)=11+\frac{1}{22}(123-121)=11+\frac{2}{22}=11 . \overline{09}
$$

$$
f(123)=\sqrt{123}=11.0905
$$

b) $\left.f^{\prime}(x)=\frac{1}{3 x^{2 / 3}}\right\} y-5=\frac{1}{75}(x-125)$

$$
\begin{aligned}
& L(x)=\frac{1}{75}(x-125)+5 \\
& L(123)=\frac{1}{75}(123-125)+5=4.97 \overline{3} \quad f(123)=\sqrt[3]{123}=4.9732
\end{aligned}
$$

7. Estimate $(16.5)^{\frac{1}{4}}-16^{\frac{1}{4}}$ using linear approximation.
$f(x)=x^{\frac{1}{4}}$
$f^{\prime}(x)=\frac{1}{4 x^{3 / 4}} \quad L(x)=\frac{1}{32}(x-16)+2 \quad L(16.5)=\frac{1}{64}+2$
$f^{\prime}(16)=\frac{1}{32}$

$$
(16.5)^{\frac{1}{4}}-16^{\frac{1}{4}}=\frac{1}{64}+2-2=\frac{1}{64}
$$

8. Approximate the value of $\sin 31^{\circ}$ using radians.

$$
\left.\begin{array}{ll}
f^{\prime}(x)=\cos (x) \\
f^{\prime}\left(\frac{\pi}{6}\right)=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}
\end{array}\right\} \begin{aligned}
& L(x)=\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right)+\frac{1}{2} \\
& \\
& L\left(\frac{\pi}{6}+\frac{\pi}{180}\right)=\frac{1}{2}+\frac{\sqrt{3}}{2}\left(\frac{\pi}{6}+\frac{\pi}{180}-\frac{\pi}{6}\right)=\frac{1}{2}+\frac{\sqrt{3} \pi}{360}=0.515115
\end{aligned}
$$

9. If f is a differentiable function, $f(2)=6$ and $f^{\prime}(2)=-\frac{1}{2}$, find the approximate value of $f(2.1)$.

$$
\begin{aligned}
& L(x)=-\frac{1}{2}(x-2)+6 \\
& f(2.1)=L(2.1)=5.95
\end{aligned}
$$

10. Write an equation of the tangent line to $f(x)=x^{3}$ at $(2,8)$. Use the tangent line to find the approximate values of $f(1.9)$ and $f(2.01)$. Are these estimations greater or less than the actual value of $f(1.9)$ and $f(2.01)$?
$\left.\begin{array}{l}f^{\prime}(x)=3 x^{2} \\ f^{\prime}(2)=12\end{array}\right\} \begin{aligned} & L(x)=12(x \cdot 2)+8 \\ & \\ & \\ & f(1.9) \approx L(1.9)=6.8 \\ & f(2.1) \approx L(2.1)=9.2\end{aligned}$

$$
\begin{aligned}
& f^{\prime \prime}(x)=6 x \\
& f^{\prime \prime}(2)=12>0 \text { con cove up (tangent line } \\
& \text { below) }
\end{aligned}
$$

Linear Approximation

Introduction

By now we have seen many examples in which we determined the tangent line to the graph of a function $f(x)$ at a point $x=a$. A linear approximation (or tangent line approximation) is the simple idea of using the equation of the tangent line to approximate values of $f(x)$ for x near $x=a$.

A picture really tells the whole story here. Take a look at the figure below in which the graph of a function $f(x)$ is plotted along with its tangent line at $x=a$. Notice how, near the point of contact $(a, f(a))$, the tangent line nearly coincides with the graph of $f(x)$, while the distance between the tangent line and graph grows as x moves away from a.

Figure 1: Graph of $f(x)$ with tangent line at $x=a$

In other words, for a given value of x close to a, the difference between the corresponding y value on the graph of $f(x)$ and the y value on the tangent line is very small.

The Linear Approximation Formula

Translating our observations about graphs into practical formulas is easy. The tangent line in Figure 1 has slope $f^{\prime}(a)$ and passes through the point $(a, f(a))$, and so using the point-slope formula $y-y_{0}=m\left(x-x_{0}\right)$, the equation of the tangent line can be expressed

$$
y-f(a)=f^{\prime}(a)(x-a),
$$

or equivalently, isolating y,

$$
y=f(a)+f^{\prime}(a)(x-a)
$$

(Observe how this last equation gives us a new simple and efficient formula for the equation of the tangent line.) Again, the idea in linear approximation is to approximate the y values on the graph $y=f(x)$ with the y values of the tangent line $y=f(a)+f^{\prime}(a)(x-a)$, so long as x is not too far away from a. That is,

$$
\begin{equation*}
\text { for } x \text { near } a, f(x) \approx f(a)+f^{\prime}(a)(x-a) \tag{1}
\end{equation*}
$$

Equation (1) is called the linear approximation (or tangent line approximation) of $f(x)$ at $x=a$. (Instead of "at", some books use "about", or "near", but it means the same thing.)

Notice how we use " \approx " instead of "=" to indicate that $f(x)$ is being approximated. Also notice that if we set $x=a$ in Equation (1) we get true equality, which makes sense since the graphs of $f(x)$ and the tangent line coincide at $x=a$.

A Simple Example

Let's look at a simple example: consider the function $f(x)=\sqrt{x}$. The tangent line to $f(x)$ at $x=1$ is $y=x / 2+1 / 2$ (so here $a=1$ is the x value at which we are finding the tangent line.) This is actually the function and tangent line plotted in Figure 1. So here, for x near $x=1$,

$$
\sqrt{x} \approx \frac{x}{2}+\frac{1}{2} .
$$

To see how well the approximation works, let's approximate $\sqrt{1.1}$:

$$
\begin{aligned}
\sqrt{1.1} & \approx \frac{1.1}{2}+\frac{1}{2} \\
& =1.05
\end{aligned}
$$

Using a calculator, we find $\sqrt{1.1} \doteq 1.0488$ to four decimal places. So our approximation has an error of about 0.1%; not bad considering the simplicity of the calculation in the linear approximation!

On the other hand, if we try to use the same linear approximation for an x value far from $x=1$, the results are not so good. For example, let's approximate $\sqrt{0.25}$:

$$
\begin{aligned}
\sqrt{0.25} & \approx \frac{0.25}{2}+\frac{1}{2} \\
& =0.625
\end{aligned}
$$

The exact value is $\sqrt{0.25}=0.5$, so our approximation has an error of 25%, a pretty poor approximation.

More Examples

Example 1: Find the linear approximation of $f(x)=x \sin \left(\pi x^{2}\right)$ about $x=2$. Use the approximation to estimate $f(1.99)$.

Solution: Here $a=2$ so we need $f(2)$ and $f^{\prime}(2)$:

$$
f(2)=2 \sin (4 \pi)=0
$$

while

$$
f^{\prime}(x)=\sin \left(\pi x^{2}\right)+x \cos \left(\pi x^{2}\right) 2 \pi x
$$

so that

$$
f^{\prime}(2)=\sin (4 \pi)+8 \pi \cos (4 \pi)=8 \pi .
$$

Therefore the linear approximation is

$$
f(x) \approx f(2)+f^{\prime}(2)(x-2)
$$

i.e.

$$
\text { for } x \text { near } 2, x \sin \left(\pi x^{2}\right) \approx 8 \pi(x-2)
$$

Using this to estimate $f(1.99)$, we find

$$
f(1.99) \approx 8 \pi(1.99-2)=-0.08 \pi \doteq-0.251
$$

to three decimals. (Checking with a calculator we find $f(1.99) \doteq-0.248$ to three decimals.)

Example 2: Use a tangent line approximation to estimate $\sqrt[3]{28}$ to 4 decimal places.

Solution: In this example we must come up with the appropriate function and point at which to find the equation of the tangent line. Since we wish to estimate $\sqrt[3]{28}, f(x)=x^{1 / 3}$. For the a-value
in Equation (1) we ask: at what value of x near 28 do we know $f(x)$ exactly? Answer: $x=27$, which is a perfect cube.

Thus, using $f(x)=x^{1 / 3}$ we find $f^{\prime}(x)=(1 / 3) x^{-2 / 3}$, so that $f(27)=3$ and $f^{\prime}(27)=1 / 27$. The linear approximation formula is then

$$
f(x) \approx f(27)+f^{\prime}(27)(x-27)
$$

i.e., for x near 27 ,

$$
x^{1 / 3} \approx 3+\frac{1}{27}(x-27)
$$

Using this to approximate $\sqrt[3]{28}$ we find

$$
\begin{aligned}
\sqrt[3]{28} & \approx 3+\frac{1}{27}(28-27) \\
& =\frac{82}{27} \\
& \doteq 3.0370
\end{aligned}
$$

A calculator check gives $\sqrt[3]{28} \doteq 3.0366$ to 4 decimals.

Example 3: Consider the implicit function defined by

$$
3\left(x^{2}+y^{2}\right)^{2}=100 x y
$$

Use a tangent line approximation at the point $(3,1)$ to estimate the value of y when $x=3.1$.

Solution: Even though y is defined implicitly as a function of x here, the tangent line to the graph of $3\left(x^{2}+y^{2}\right)^{2}=100 x y$ at $(3,1)$ can easily be found and used to estimate y for x near 3 .

First, find y^{\prime}. Differentiating both sides of $3\left(x^{2}+y^{2}\right)^{2}=100 x y$ with respect to x gives

$$
6\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)=100 y+100 x y^{\prime} .
$$

Now substitute $(x, y)=(3,1)$:

$$
6(9+1)\left(6+2 y^{\prime}\right)=100+300 y^{\prime}
$$

which yields $y^{\prime}=13 / 9$. Thus the equation of the tangent line is

$$
\begin{aligned}
y-1 & =\frac{13}{9}(x-3), \text { or } \\
y & =\frac{13}{9} x-\frac{30}{9} .
\end{aligned}
$$

Thus, for points (x, y) on the graph of $3\left(x^{2}+y^{2}\right)^{2}=100 x y$ with x near 3 ,

$$
y \approx \frac{13}{9} x-\frac{30}{9}
$$

Setting $x=3.1$ in this last equation gives $y \approx 103 / 90 \doteq 1.14$ to two decimals.

Exercises

1. Physicists often use the approximation $\sin x \approx x$ for small x. Convince yourself that this is valid by finding the linear approximation of $f(x)=\sin x$ at $x=0$.
Solution For x near $0, f(x) \approx f(0)+f^{\prime}(0)(x-0)$. Using $f(x)=\sin x, f(0)=\sin (0)=0$ and $f^{\prime}(0)=\cos (0)=1$ we find $\sin x \approx x$.
2. Find the linear approximation of $f(x)=x^{3}-x$ about $x=1$ and use it to estimate $f(0.9)$.

Solution For x near $1, f(x) \approx f(1)+f^{\prime}(1)(x-1)$. Using $f(x)=x^{3}-x, f(1)=0$ and $f^{\prime}(1)=2$ we find $f(x) \approx 2(x-1)$, so $f(0.9) \approx 2(0.9-1)=-0.2$.
3. Use a linear approximation to estimate $\cos 62^{\circ}$ to three decimal places. Check your estimate using your calculator. For this problem recall the trig value of the special angles:

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
$\pi / 3$	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3}$
$\pi / 4$	$1 / \sqrt{2}$	$1 / \sqrt{2}$	1
$\pi / 6$	$1 / 2$	$\sqrt{3} / 2$	$1 / \sqrt{3}$

Solution Here 62° is close to 60° which is $\pi / 3$ radians, and we know $\cos (\pi / 3)=1 / 2$. Letting $f(x)=\cos x$, for x near $\pi / 3, f(x) \approx f(\pi / 3)+f^{\prime}(\pi / 3)(x-\pi / 3)$. Since $62^{\circ}=62 \pi / 180$ radians and $f^{\prime}(x)=-\sin x$, this gives

$$
\begin{aligned}
\cos 62^{\circ} & \approx 1 / 2-\sin (\pi / 3)(62 \pi / 180-\pi / 3) \\
& =1 / 2-(\sqrt{3} / 2)(\pi / 90) \\
& \doteq 0.470
\end{aligned}
$$

4. Use a tangent line approximation to estimate $\sqrt[4]{15}$ to three decimal places.

Solution 15 is near 16 where we know $\sqrt[4]{16}=2$ exactly. Letting $f(x)=\sqrt[4]{x}$, we have for x near 16 , $f(x) \approx f(16)+f^{\prime}(16)(x-16)$. That is, $\sqrt[4]{x} \approx 2+(1 / 32)(x-16)$. Thus

$$
\begin{aligned}
\sqrt[4]{x} & \approx 2+(1 / 32)(15-16) \\
& =63 / 32 \\
& \doteq 1.969 .
\end{aligned}
$$

5. Define y implicitly as a function of x via $x^{2 / 3}+y^{2 / 3}=5$. Use a tangent line approximation at $(8,1)$ to estimate the value of y when $x=7$.

Solution First find the equation of the tangent line to the curve at $(8,1)$ and then substitute $x=7$. Differentiating implicity with respect to x we find

$$
\frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} y^{\prime}=0
$$

and substituting $(x, y)=(8,1)$ yields $y^{\prime}=-1 / 2$. Thus the equation of the tangent line is

$$
y=1-\frac{1}{2}(x-8)
$$

and substituting $x=7$ we find $y=3 / 2$. That is, $(7,3 / 2)$ is the point on the tangent line. Thus the point on the curve with x coordinate $x=7$ has corresponding y coordinate $y \approx 3 / 2$.
6. Suppose $f(x)$ is a differentiable function whose graph passes through the points $(-1,4)$ and $(1,7)$. The estimate $f(-0.8) \approx 5$ is obtained using a linear approximation about $x=-1$. Using this information, find $\frac{d}{d x}(f(x))^{2}$.
Solution This problem was made more difficult by adding extra information which is not needed for the solution: the point $(1,7)$ plays no part. First, note that since $(-1,4)$ is on the graph of $f(x)$, $f(-1)=4$. For x near $-1, f(x) \approx f(-1)+f^{\prime}(-1)(x+1)$. Using this linear approximation, the estimate $f(-0.8) \approx 5$ was made; that is

$$
5=4+f^{\prime}(-1)(-0.8+1)
$$

So that $f^{\prime}(-1)=5$. Now do the derivative, remembering the chain rule:

$$
\begin{aligned}
\frac{d}{d x}(f(x))^{2} & =2 f(x) f^{\prime}(x)_{x=-1} \\
& =2(4)(5) \\
& =40
\end{aligned}
$$

7. The profit $P(q)$ from producing q units of goods is given by

$$
P(q)=396 q-2.2 q^{2}+k
$$

for some constant k. Using a linear approximation about $q=80$ we find $P(81) \approx 17244$. What is k ?
Solution For q near $80, P(q) \approx P(80)+P^{\prime}(80)(q-80)$. Using this approximation, $P(81) \approx 17244$, so that

$$
\begin{aligned}
& 17244=P(80)+P^{\prime}(80)(q-80) \\
& 17244=\left[396(80)-2.2(80)^{2}+k\right]+[396-4.4(80)](1)
\end{aligned}
$$

where in this last equation the first expression in square brackets is $P(80)$ and the second expression in square brackets is $P^{\prime}(80)$. Solving this last equation for k gives $k=-400$ (note the original answers had $k=400$ which is incorrect).

