UBSP-Chemistry quiz

1. If a material has a half-life of 24 hours, how long do you have to wait until the amount of radioisotope is 1/8 its original amount? Show your work/reasoning

$$1 \rightarrow 1/2 \rightarrow \frac{1}{4} \rightarrow \frac{1}{8}$$

$$24 \text{hrs} + 24 \text{hrs} + 24 \text{hrs} = 72 \text{ hrs}$$

2. How many half-life cycles would be required for a 860.0 gram sample of radioactive thorium to decay until less than 15.0 grams remain?

3. Fill in the chart below for each of the following isotopes.

Atomic Notation	Atomic #	Mass	<u>; #</u>	#Protons	<u>#Ne</u>	utrons	#Electrons
$^{131}_{53}I$							
		99					43
131 ₅₃ I	53	131	53	78	53		
131 ₅₃ I 99 ₄₃ Tc	13	99	43		56	43	

4. Write the equation for the alpha decay for these two elements

A)
$$^{209}_{85}At \rightarrow ^{205}_{83}Bi + ^{4}_{2}He$$

5. Write the equation for the beta decay for these two elements

A)
$$_{56}^{140}Ba \rightarrow _{57}^{140}La + Beta$$

6. Bonus-CALCULATE the <u>AVERAGE ATOMIC MASS</u> of an element given the following information:

Isotope #	atomic mass	percent abundance
1	10.0129 amu	19.78%
2	11.00931 amu	80.22%

(YOU MUST SHOW WORK TO GET CREDIT!!!)

(10.0129 amu)(0.1978) + (11.00931 amu)(0.8022) = 10.812 amu

→ b) What element is this?

Boron