UBSP-Electricity homework

- 1. Describe the interactions between the following two charges:
 - a. Like charges will <u>__attract___</u>
 - b. Opposite charges will <u>repel</u>
- 2. Explain what current is. Flow of electrons
- 3. Explain what resistance is. resistance to the flow of electrons
- 4. Explain what voltage is. Electrical potential difference between two points
- 5. Explain what electrical potential is. Voltage
- 6. What are the units of electrical potential? volts
- 7. What are the units of current? Amps
- 8. Explain why current flows in that direction. (Hint, you should be explaining the movement of electrons) negative (-)---> positive (+)
- Explain what an insulator is and give me 2 examples of insulators. Insulators have high resistance and do not allow electrons to travel through easily. Examples are: Rubber plastic, wood, glass...
- 10. Explain what a conductor is a give me 2 examples of conductors. A conductor have low resistance and do allow electrons to travel through easily
- 11. Solve for R and V using Ohm's law.
- 12. Potential difference is the same thing as what electricity term? R=V/I V=I/R
- 13. What are the two types of current? Explain the differences between each.
 - a. Type 1 <mark>DC</mark>
 - b. Type 2 -AC
- 14. Discuss the three ways to reduce resistance. Give an example of each.
 - a. 1 reduce temperature
 - b. 2 -thicker wires or short wires
 - c. 3 -better wires (material)
- 15. Explain what a circuit is: a closed path along which electrons can flow
- 16. What is the difference between an open and closed circuit? Open: there is a gap and electrons can not flow Closed circuit: a path were electrons can flow without gabs
- 17. What is the difference between a series (single-pathway circuit) and a parallel circuit (a branched pathway circuit)?

Drawings:

18. Label the circuits shown to the right as either series, parallel, or both.

- 19. Draw a series circuit with 2 batteries and two lightbulbs with a resistance of 5 Ω each, and an open switch.
- 20. Draw a parallel circuit with 1 battery, 3 branches each with a light bulb. The resistance of each light bulb is 2 Ω .

- 21. What will happen if a bulb is removed from each circuit? Be specific.
 - a. The series circuit –A break anywhere in the path results in an open circuit; electron flow ceases
 - b. The parallel circuit -• A break in any path doesn't interrupt flow in other paths
- 22. What are benefits for using a parallel circuit as opposed to a series circuit? you can turn off part of the circuit without affecting other parts

Calculations: SHOW YOUR WORK OR YOU DON'T GET CREDIT

23. A clothes dryer is equipped with an electric heater that works by passing air across an electric wire that is hot because of the current in it. The wire's resistance is 10.0Ω , and the current in the wire equals 24 A. What is the voltage across the heater wire?

$$I = \frac{1}{R} \rightarrow \sqrt{2} IR = 24 \times 10 = 240 \text{ volts}$$

24. An electric car is equipped with a motor that can deliver 50 hp. The voltage across the motor's terminals equals 500 V, and the resistance in the motor's circuit is 7.5 Ω . How large is the current in the motor?

$$1 = \frac{1}{R} = \frac{500}{7.5} = 66.7 \approx 67 \text{ amps}$$

25. A TV is plugged into a 120V outlet. The current in the TV is equal to 0.75 A. What is the overall resistance of the TV?

26. A refrigerator's circuit has a current equal to 0.647 A in it when the voltage across the circuit equals 116 V. What is the resistance of the circuit?

$$R = \frac{1}{1} = \frac{116}{0.017} = 179$$

27. A window-unit air conditioner has an overall resistance of 22 Ω . If the voltage across the air conditioner equals 115 V, what is the current in the air conditioner's circuit?

$$\frac{T=V-115V}{R}=52 \text{ amps}$$

28. A washing machine motor works because of a current of 9.8 A in a circuit with a resistance of 12.2 Ω . What is the voltage across the terminal?

V=1R=98×122=120volt)

Drawings AND Calculations (optional problems):

29. Use the drawing to the right to answer the following questions.

a. What is the voltage of each battery?

GV

b. Calculate the total resistance in the circuit.

$$R = \frac{V}{I} - \frac{6}{5} = 12 \Omega$$

c. What is the individual resistance in each resistor?

d. Calculate the voltage drop across EACH resistor.

$$V = IR = (5)(4) = 2 volts$$

30. Use the drawing to the right to answer the following

a. What is the voltage passing
through each branch? 12v

$$= \frac{13}{12}$$

 $R = -\frac{12}{13} \Rightarrow I = 12$
 $R = \frac{12}{13} \Rightarrow I = 12$
 $R = \frac{13}{12} \Rightarrow I = 12$

b. What is the current passing through each branch?

at 3 ohms, I= 12/3= 4Amps

at 2 ohms I =12/2= 6amps

at 4 ohms I =12/4= 3 amps