

Chapter 20 Ohm's law and circuits

This lecture will help you understand:

- Electric Charge
- Coulomb's Law
- Voltage Sources
- Electric Potential
- Electric Current
- Electrical Resistance
- Ohm's Law
- Electric Circuits
- Electric Power

The atom contains:

- Electrons found outside the nucleus; negatively charged
- Protons found in the nucleus; positive charge equal in magnitude to the electron's negative charge
- Neutrons found in the nucleus; no charge; virtually same mass as a proton

Polarization/ Induced Charge

Charge polarization

• Why a charged rubber balloon sticks to a wall.

The charged balloon induces polarization of molecules or atoms in the wall. Negative charges on balloon pull positive sides of molecules near it. Hence a slightly positive induced surface charge on the wall.

+ H H H

The balloon sticks.

Induced Charge; Polarizing

What is electricity?

•Everything is made of atoms which contain **POSITIVE** particles called **PROTONS** and **NEGATIVE** particles called **ELECTRONS**.

Electric Charge

Conservation of Charge

- In any charging process, no electrons are created or destroyed.
- Electrons are simply transferred from one material to another.

Electric Force and Charge

Electric force

a fundamental force of nature can attract some objects (opposite charge) and repel others (same charge)

like signs of charge — force is repulsion

Fundamental rule for electricity: *Like charges repel; unlike charges attract*.

unlike signs of charge — force is attraction

Electric Charge

- Unit of charge = coulomb (C)
 - Equivalent to charge of 6.24 x 10¹⁸ electrons!
 - Metric unit of charge
- Electron charge
 - Fundamental charge
 - Smallest seen in nature
 - Quantity of charge and the number of electrons

$$e = \frac{q}{n} = \frac{1.00 \ coulomb}{6.24 \times 10^{18} electron}$$

$$= 1.60 \times 10^{-19} \frac{coulomb}{electron}$$

Electrostatic Forces

Product of two charges Force charges, squared! $k = 9.00 \times 10^9 \frac{N \cdot m^2}{C^2}$ $G = 6.67 \times 10^{-11} N \cdot m \cdot kg^{-2}$ $\frac{Gm_1m_2}{d^2}$

Coulomb's law

- Relationship giving force between two charges
- Similar to Newton's law of gravitation
- k versus G implies weaker gravity

Electric Potential = voltage

Electric potential:

Electric potential = <u>electric potential energy</u> charge Electric potential and voltage are one and the same. Unit of measurement is the *volt*.

$$1 \text{ volt} = \frac{1 \text{ joule}}{\text{coulomb}}$$

Electric Potential

Conductor Flow of electrons= current, *I (Amps)*

Charge, Current & Time

- Electric current is given the symbol I
- Electric current is the movement of negative charges (electrons) in a Circuit
- Current is the amount of charge flowing per second and is given the unit

• Amps (A)

More Current Details

- Current = charge per unit time
- Units = ampere, amp (A)
- Direct current (DC)
 - Charges move in one direction
 - Electronic devices, batteries, solar cells
- Alternating current (AC)
 - Charge motion oscillatory
 - No net current flow

Electrical Conductors and Insulators

• Electrical conductors

- Electrons are free to move throughout material
- Added charge dissipates
- Examples: metals
- Electrical insulators
 - Electron motions restricted
 - Added charge tends to remain on object
 - Examples: glass, wood, diamond (carbon)
- Semiconductors
 - Conduct/insulate depending on circumstances
 - Applications: computer chips, solar cells, ...

What is a conductor?

Good conductors allow electrons to move through them easily. Insulators do not allow electrons to move easily.

What is an insulator?

Resistors

Resistors the flow of electric current. They have a property called which is measured in

The symbol for a resistor is $-\frac{M}{R}$

More on Resistance

- Resistance factors
 - Type of material
 - Length
 - Cross-sectional area
 - Temperature
 - Superconductors
 - Negligible resistance at very low temperatures

Resistors

Standard resistors are manufactured for use in electric circuits; they are color-coded to indicate their value and precision.

The resistance of a wire is directly proportional to its length and inversely proportional to its $R = \rho \frac{\ell}{A}$ cross-sectional area:

The constant ρ , the resistivity, is characteristic of the material.

Voltage Sources

Electric potential difference (continued)

Water and electric circuits compared

Electric circuits: any closed path along which electrons can flow for continuous flow — no gaps (such as an open electric switch)

Ohm's Law

Ohm's Law

relationship between current, voltage, and resistance

Current in a circuit varies in direct proportion to the potential difference (voltage) and inversely with the resistance:

Electric circuits:

any closed path along which electrons can flow

for continuous flow — no gaps (such as an open electric switch)

Electric Current

In order for current to flow, there must be a path from one battery terminal, through the circuit, and back to the other battery terminal. Only one of these circuits will work:

(a)

Electric Hazards

A person receiving a shock has become part of a complete circuit.

Ohm's Law

Electric shock

- damaging effects of shock result from current passing through the body
- electric potential difference between one part of your body and another part depends on body condition and resistance, which can range from 100 ohms to 500,000 ohms

Devices connect to a circuit in one of two ways:

Series

Parallel

Series:

- A single-pathway circuit for electron flow
- A break anywhere in the path results in an open circuit; electron flow ceases
- Total resistance adds, more devices, less current

Parallel:

- A branched pathway is formed for the flow of electrons
- A break in any path doesn't interrupt flow in other paths
- A device in each branch operates independently of the others
- Total current in the branches add

Electric Power

Electric power

- rate at which electric energy is converted into another form
- in equation form:

power = current × voltage P= IV

The unit of power is the watts, W

Example: 100-watt lamp draws 0.8 ampere

Which of these particles has an electrical charge?

- A) Proton.
- B) Electron.
- C) Ion.
- D) All of the above.

Electric Current CHECK YOUR NEIGHBOR

Which of these statements is true?

- A. Electric current is a flow of electric charge.
- B. Electric current is stored in batteries.
- C. Both are true.
- D. Neither are true.

Conductors and Insulators CHECK YOUR NEIGHBOR

When you buy a water pipe in a hardware store, the water isn't included. When you buy copper wire, electrons

- A. must be supplied by you, just as water must be supplied for a water pipe.
- B. are already in the wire.
- C. may fall out, which is why wires are insulated.
- D. None of the above.

Questions

The flow of charge is defined as

- A. potential difference.
- B. power.
- C. energy.
- D. current.
- If a potential difference of 12.0 V is required to produce a current of 3.0 A in a wire, the resistance of the wire is
 - Α. 4.0 Ω.
 - **B**. 36 Ω.
 - **C**. 0.25 Ω.
 - D. 3.0 Ω.

Electricity— example problems

A power line with a resistance of 2 ohms draws a current of 80 A. The power dissipated in the line is

A) 40 W.
B) 160 W.
C) 320 W.
D) 12,800 W.
E) none of the above

Summary

 e^{-}

- Electric Charge
 Electric Force
- Coulomb's Law
- Electric Potential (voltage)
- Electric Current
- Electrical Resistance
- Ohm's Law

current =
$$\frac{\text{voltage}}{\text{resistance}}$$
 or $I = \frac{V}{R}$

• Power

$$P = IV.$$

Like charges repel; unlike charges attract

$$F = k \frac{q_1 q_2}{d^2}$$

 $I = \frac{Q}{Q}$

 $1 \text{ volt} = \frac{1 \text{ joule}}{\text{coulomb}}$