AMERICAN RIVER COLLEGE

MATHEMATICS DEPARTMENT B. ETGEN

FINAL REVIEW SIMPLIFYING

MATH 100: BEGINNING ALGEBRA

5.1 THE PRODUCT RULE AND POWER RULES FOR EXPONENTS

For any integers m and n,

Product Rule
$$a^m \cdot a^n = a^{m+n}$$

Power Rules (a)
$$(a^m)^n = a^{mn}$$

(b)
$$(ab)^m = a^m b^m$$

(c)
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} \quad (b \neq 0).$$

Perform the operations by using rules for exponents.

$$2^4 \cdot 2^5 = 2^{4+5} = 2^9$$

$$(3^4)^2 = 3^{4 \cdot 2} = 3^8$$

$$(6a)^5 = 6^5 a^5$$

$$\left(\frac{2}{3}\right)^4 = \frac{2}{3}$$

5.2 INTEGER EXPONENTS AND THE QUOTIENT RULE

If $a \neq 0$, then for integers m and n,

Zero Exponent

$$a^{0} = 1$$

Negative Exponent $a^{-n} = \frac{1}{a^n}$

$$a^{-n} = \frac{1}{a^n}$$

Quotient Rule

$$\frac{a^m}{a^n} = a^{m-n}$$

Negative-to-Positive Rules

$$\frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m} \quad (b \neq 0)$$

$$\left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^{m} \quad (b \neq 0).$$

Simplify by using the rules for exponents.

$$15^{\circ} = 1$$

$$5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$

$$\frac{4^8}{4^3} = 4^{8-3} = 4^5$$

$$\frac{4^{-2}}{3^{-5}} = \frac{3^5}{4^2}$$

$$\left(\frac{6}{5}\right)^{-3} = \left(\frac{5}{6}\right)^3$$

1) Simplify.

$$\left(\frac{x^{-3}(yz^2)^2}{x^2y^3z^3}\right)^{-2}$$

$$(-3x^4)(7x^{-5})$$

5.3 AN APPLICATION OF EXPONENTS: SCIENTIFIC NOTATION

To write a number in scientific notation (as $a \times 10^n$, where $1 \le |a| < 10$), move the decimal point to follow the first nonzero digit. If moving the decimal point makes the number smaller, n is positive. If it makes the number larger, n is negative. If the decimal point is not moved, n is 0.

0.00

$$247 = 2.47 \times 10^{2}$$
$$0.0051 = 5.1 \times 10^{-3}$$
$$4.8 = 4.8 \times 10^{0}$$

Write without exponents.

Write in scientific notation.

$$3.25 \times 10^5 = 325,000$$

 $8.44 \times 10^{-6} = 0.00000844$

3) Convert to scientific notation:

-0.00000062

4) Convert to a decimal:

$$-3.2 \times 10^{7}$$

5.4 ADDING AND SUBTRACTING POLYNOMIALS; GRAPHING SIMPLE POLYNOMIALS

Adding Polynomials

Add like terms.

Subtracting Polynomials

Change the signs of the terms in the second polynomial and add the second polynomial to the first.

Graphing Simple Polynomials

To graph a simple polynomial equation such as $y = x^2 - 2$, plot points near the vertex. (In this chapter, all parabolas have a vertex on the x-axis or the y-axis.)

Add.

$$2x^{2} + 5x - 3$$

$$5x^{2} - 2x + 7$$

$$7x^{2} + 3x + 4$$

Subtract.

$$(2x^2 + 5x - 3) - (5x^2 - 2x + 7)$$

= $(2x^2 + 5x - 3) + (-5x^2 + 2x - 7)$
= $-3x^2 + 7x - 10$

Graph $y = x^2 - 2$.

x	У
-2	2
-1	-1
0	-2
1	-1
2	2

5) Subtract:

$$3x^3 - 5x^2 + 3x - 7$$
$$7x^3 - 5x^2 - 5x - 3$$

5.5 MULTIPLYING POLYNOMIALS

General Method for Multiplying Polynomials

Multiply each term of the first polynomial by each term of the second polynomial. Then add like terms.

FOIL Method for Multiplying Binomials

- Step 1 Multiply the two First terms to get the first term of the answer.
- Step 2 Find the Outer product and the Inner product, and mentally add them, when possible, to get the middle term of the answer.
- Step 3 Multiply the two Last terms to get the last term of the answer.

Add the terms found in Steps 1-3.

6) Multiply:

$$(x+3y)(x-5y)$$

Multiply. $3x^3 - 4x^2 + 2x - 7$ - 4x + 3 $9x^3 - 12x^2 + 6x - 21$ $- 12x^4 - 16x^3 + 8x^2 - 28x$ $- 12x^4 - 7x^3 - 4x^2 - 22x - 21$

Multiply.
$$(2x + 3)(5x - 4)$$

$$2x(5x) = 10x^2$$

$$2x(-4) + 3(5x) = 7x$$

$$3(-4) = -12$$

The product of (2x + 3) and (5x - 4) is $10x^2 + 7x - 12$.

7) Multiply:

$$\begin{array}{c} x^3 - 2x^2 + 3x - 7 \\ x - 3 \end{array}$$

5.6 SPECIAL PRODUCTS

Square of a Binomial

$$(x + y)^2 = x^2 + 2xy + y^2$$
$$(x - y)^2 = x^2 - 2xy + y^2$$

Product of the Sum and Difference of Two Terms

$$(x + y)(x - y) = x^2 - y^2$$

8) Multiply:

$$(x+3)^2$$

Multiply.

$$(3x + 1)^2 = 9x^2 + 6x + 1$$
$$(2m - 5n)^2 = 4m^2 - 20mn + 25n^2$$

$$(4a + 3)(4a - 3) = 16a^2 - 9$$

9) Multiply:

$$(2x-5y)^2$$

5.7 DIVIDING POLYNOMIALS

Dividing a Polynomial by a Monomial

Divide each term of the polynomial by the monomial.

$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

Dividing a Polynomial by a Polynomial Use "long division."

10) Divide:

$$\left(12x^3 - 6x + 3\right) \div \left(3x\right)$$

Divide.

$$\frac{4x^3 - 2x^2 + 6x - 9}{2x} = 2x^2 - x + 3 - \frac{9}{2x}$$

$$\begin{array}{r}
2x - 5 \\
3x + 4)6x^2 - 7x - 21 \\
\underline{6x^2 + 8x} \\
-15x - 21 \\
\underline{-15x - 20} \\
-1
\end{array}$$
Remainder

The final answer is $2x - 5 + \frac{-1}{3x + 4}$.

11) Divide:

$$(x^3 - 8x^2 + 19x - 10) \div (x - 3)$$

6.1 THE GREATEST COMMON FACTOR; FACTORING BY GROUPING

Finding the Greatest Common Factor (GCF)

- Include the largest numerical factor of every term.
- Include each variable that is a factor of every term raised to the least exponent that appears in a term.

Factoring by Grouping

- Step 1 Group the terms.
- Step 2 Factor out the greatest common factor in each group.
- Step 3 Factor out a common binomial factor from the result of Step 2.
- Step 4 If necessary, try a different grouping.

 $4x^{2}y$, -

Find the greatest common factor of

$$4x^{2}y, -6x^{2}y^{3}, 2xy^{2}.$$

$$4x^{2}y = 2^{2} \cdot x^{2} \cdot y$$

$$-6x^{2}y^{3} = -1 \cdot 2 \cdot 3 \cdot x^{2} \cdot y^{3}$$

$$2xy^{2} = 2 \cdot x \cdot y^{2}$$

The greatest common factor is 2xy.

Factor by grouping.

$$3x^{2} + 5x - 24xy - 40y = (3x^{2} + 5x) + (-24xy - 40y)$$
$$= x(3x + 5) - 8y(3x + 5)$$
$$= (3x + 5)(x - 8y)$$

(continued)

12) Factor:
$$12x^3y - 6y^3$$

13) Factor:
$$3x^2 - 7x - 3xy + 7y$$

6.2 FACTORING TRINOMIALS

To factor $x^2 + bx + c$, find m and n such that mn = c and m + n = b.

$$mn = c$$

$$x^2 + bx + c$$

$$\uparrow$$

$$+ n = b$$

Then $x^2 + bx + c = (x + m)(x + n)$.

Check by multiplying.

14) Factor:
$$x^2 - 4x - 21$$

Factor
$$x^2 + 6x + 8$$
.

$$mn = 8$$

$$x^2 + 6x + 8$$

$$m + n = 6$$

 $= x^2 + 6x + 8$

m=2 and n=4

$$x^{2} + 6x + 8 = (x + 2)(x + 4)$$
Check: $(x + 2)(x + 4) = x^{2} + 4x + 2x + 8$

15) Factor:
$$3x^2 - 9x + 6$$

6.3 MORE ON FACTORING TRINOMIALS

To factor $ax^2 + bx + c$,

By Grouping

Find m and n.

$$mn = ac$$

$$ax^2 + bx + a$$

$$m + n = b$$

By Trial and Error

Use FOIL in reverse.

16) Factor:
$$35 x^2 + 2 x - 1$$

Factor
$$3x^2 + 14x - 5$$
.

$$mn = -15, m + n = 14$$

$$m = -1$$
 and $n = 15 \leftarrow$ Choice of m and n

By trial and error or by grouping,

$$3x^2 + 14x - 5 = (3x - 1)(x + 5).$$

17) Factor:
$$16 x^2 - 20 x - 6$$

6.4 SPECIAL FACTORING TECHNIQUES

Difference of Squares

$$x^2 - y^2 = (x + y)(x - y)$$

Perfect Square Trinomials

$$x^2 + 2xy + y^2 = (x + y)^2$$

$$x^2 - 2xy + y^2 = (x - y)^2$$

Difference of Cubes

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

Sum of Cubes

$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

18) Factor:
$$9x^2 - 1$$

Factor.

$$4x^2 - 9 = (2x + 3)(2x - 3)$$

$$9x^2 + 6x + 1 = (3x + 1)^2$$

$$4x^2 - 20x + 25 = (2x - 5)^2$$

$$m^3 - 8 = m^3 - 2^3 = (m-2)(m^2 + 2m + 4)$$

$$z^3 + 27 = z^3 + 3^3 = (z + 3)(z^2 - 3z + 9)$$

19) Factor: $24 x^3 - 81$

7.1 THE FUNDAMENTAL PROPERTY OF RATIONAL EXPRESSIONS

To find the value(s) for which a rational expression is undefined, set the denominator equal to 0 and solve the equation.

Writing a Rational Expression in Lowest Terms

Step 1 Factor the numerator and denominator.

Step 2 Use the fundamental property to divide out common factors.

There are often several different equivalent forms of a rational expression.

20) Find the values for which the rational expression is undefined:

$$\frac{x^2 - 4x - 21}{x^2 + 5x}$$

Find the values for which the expression $\frac{x-4}{x^2-16}$ is undefined.

$$x^2 - 16 = 0$$

 $(x - 4)(x + 4) = 0$ Factor.
 $x - 4 = 0$ or $x + 4 = 0$ Zero-factor property
 $x = 4$ or $x = -4$

The rational expression is undefined for 4 and -4, so $x \ne 4$ and $x \ne -4$.

Write $\frac{x^2-1}{(x-1)^2}$ in lowest terms.

$$\frac{x^2 - 1}{(x - 1)^2} = \frac{(x - 1)(x + 1)}{(x - 1)(x - 1)}$$
$$= \frac{x + 1}{x - 1}$$

Give four equivalent forms of $-\frac{x-1}{x+2}$.

Distribute the - sign in the numerator to get $\frac{-(x-1)}{x+2}$ or $\frac{-x+1}{x+2}$; do so in the denominator to get $\frac{x-1}{-(x+2)}$ or $\frac{x-1}{x-2}$. (continued)

21) Simplify:

$$\frac{x^2 + 5 x - 14}{4 - x^2}$$

7.2 MULTIPLYING AND DIVIDING RATIONAL EXPRESSIONS

Multiplying or Dividing Rational Expressions

- Step 1 Note the operation. If the operation is division, use the definition of division to rewrite as multiplication.
- Step 2 Multiply numerators and multiply denominators.
- Step 3 Factor numerators and denominators completely.
- Step 4 Write in lowest terms, using the fundamental property.

Note: Steps 2 and 3 may be interchanged based on personal preference.

22) Multiply:

$$\frac{x^2 + 3x - 10}{x^2 - 9} \frac{x^3 - 27}{x^2 + 5x}$$

Multiply.
$$\frac{3x+9}{x-5} \cdot \frac{x^2 - 3x - 10}{x^2 - 9}$$

$$= \frac{(3x+9)(x^2 - 3x - 10)}{(x-5)(x^2 - 9)}$$

$$= \frac{3(x+3)(x-5)(x+2)}{(x-5)(x+3)(x-3)}$$

$$= \frac{3(x+2)}{x-3}$$
Divide.
$$\frac{2x+1}{x+5} \div \frac{6x^2 - x - 2}{x^2 - 25}$$

$$= \frac{2x+1}{x+5} \cdot \frac{x^2 - 25}{x^2 - 25}$$
Mu

wide.
$$\frac{x+5}{x+5} \div \frac{x^2-25}{x^2-25}$$

$$= \frac{2x+1}{x+5} \cdot \frac{x^2-25}{6x^2-x-2}$$

$$= \frac{(2x+1)(x^2-25)}{(x+5)(6x^2-x-2)}$$

$$= \frac{(2x+1)(x+5)(x-5)}{(x+5)(2x+1)(3x-2)}$$

$$= \frac{x-5}{3x-2}$$
Multiply by the reciprocal.

23) Divide:

$$\frac{9 x^2 - 1}{9 x^2 + 9 x} \div \frac{9 x^2 + 6 x + 1}{3 x^2}$$

7.3 LEAST COMMON DENOMINATORS

Finding the LCD

Step 1 Factor each denominator into prime factors.

Step 2 List each different factor the greatest number of times it appears.

Step 3 Multiply the factors from Step 2 to get the LCD.

Writing a Rational Expression with a Specified Denominator

Step 1 Factor both denominators.

Step 2 Decide what factor(s) the denominator must be multiplied by in order to equal the specified denominator.

Step 3 Multiply the rational expression by that factor divided by itself. (That is, multiply by 1.)

Find the LCD for
$$\frac{3}{k^2 - 8k + 16}$$
 and $\frac{1}{4k^2 - 16k}$
 $k^2 - 8k + 16 = (k - 4)^2$ Factor each denominator.
 $4k^2 - 16k = 4k(k - 4)$ denominator.
LCD = $(k - 4)^2 \cdot 4 \cdot k$
= $4k(k - 4)^2$

Find the numerator: $\frac{5}{2z^2 - 6z} = \frac{?}{4z^3 - 12z^2}.$ $\frac{5}{2z(z - 3)} = \frac{?}{4z^2(z - 3)}$

2z(z-3) must be multiplied by 2z in order to obtain $4z^2(z-3)$.

$$\frac{5}{2z(z-3)} \cdot \frac{2z}{2z} = \frac{10z}{4z^2(z-3)} = \frac{10z}{4z^3 - 12z^2}$$
 (continued)

7.4 ADDING AND SUBTRACTING RATIONAL EXPRESSIONS

Adding Rational Expressions

Step 1 Find the LCD.

Step 2 Rewrite each rational expression with the LCD as denominator.

Step 3 Add the numerators to get the numerator of the sum. The LCD is the denominator of the sum.

Step 4 Write in lowest terms.

Subtracting Rational Expressions

Follow the same steps as for addition, but subtract in Step 3.

Add.
$$\frac{2}{3m+6} + \frac{m}{m^2 - 4}$$

$$3m+6 = 3(m+2)$$

$$m^2 - 4 = (m+2)(m-2)$$

$$= \frac{2(m-2)}{3(m+2)(m-2)} + \frac{3m}{3(m+2)(m-2)}$$

$$= \frac{2m-4+3m}{3(m+2)(m-2)}$$

$$= \frac{5m-4}{3(m+2)(m-2)}$$
Subtract.
$$\frac{6}{k+4} - \frac{2}{k}$$
 The LCD is $k(k+4)$.
$$= \frac{6k}{(k+4)k} - \frac{2(k+4)}{k(k+4)}$$

$$= \frac{6k-2(k+4)}{k(k+4)}$$

$$= \frac{6k-2k-8}{k(k+4)}$$
Be careful with signs when subtracting the numerators.
$$= \frac{4k-8}{k(k+4)}, \text{ or } \frac{4(k-2)}{k(k+4)}$$

24) Add:

$$\frac{1}{x+2} + \frac{2}{x^2+2x}$$

25) Subtract:

$$\frac{x-4}{x^2-3\;x+2}-\frac{x+2}{x^2-x}$$

7.5 COMPLEX FRACTIONS

Simplifying Complex Fractions

Method 1 Simplify the numerator and denominator separately. Then divide the simplified numerator by the simplified denominator.

Method 2 Multiply the numerator and denominator of the complex fraction by the LCD of all the denominators in the complex fraction. Write in lowest terms.

Simplify.

Method 1
$$\frac{\frac{1}{a} - a}{1 - a} = \frac{\frac{1}{a} - \frac{a^2}{a}}{1 - a} = \frac{\frac{1 - a^2}{a}}{1 - a}$$

$$= \frac{1 - a^2}{a} \div (1 - a)$$

$$= \frac{1 - a^2}{a} \cdot \frac{1}{1 - a} \qquad \text{Multiply by the reciprocal.}$$

$$= \frac{(1 - a)(1 + a)}{a(1 - a)} = \frac{1 + a}{a}$$
Method 2
$$\frac{\frac{1}{a} - a}{1 - a} = \frac{\left(\frac{1}{a} - a\right)a}{(1 - a)a} = \frac{\frac{a}{a} - a^2}{(1 - a)a}$$

$$= \frac{1 - a^2}{(1 - a)a} = \frac{(1 + a)(1 - a)}{(1 - a)a}$$

$$= \frac{1 + a}{a}$$

8.1 EVALUATING ROOTS

If a is a positive real number, then

 \sqrt{a} is the positive square root of a;

 $-\sqrt{a}$ is the negative square root of a; $\sqrt{0} = 0$.

If a is a negative real number, then \sqrt{a} is not a real number.

If a is a positive rational number, then \sqrt{a} is rational if a is a perfect square and \sqrt{a} is irrational if a is not a perfect square.

Each real number has exactly one real cube root.

$$\sqrt{49} = 7$$

$$-\sqrt{81} = -9$$

$$\sqrt{-25}$$
 is not a real number

$$\sqrt{\frac{4}{9}}$$
, $\sqrt{16}$ are rational. $\sqrt{\frac{2}{3}}$, $\sqrt{21}$ are irrational. $\sqrt[3]{27} = 3$ $\sqrt[3]{-8} = -2$

8.2 MULTIPLYING, DIVIDING, AND SIMPLIFYING RADICALS

Product Rule for Radicals

For nonnegative real numbers a and b,

$$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$$
 and $\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$.

Quotient Rule for Radicals

If a and b are nonnegative real numbers and b is not 0, then

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$
 and $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.

If all indicated roots are real, then

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$
 and $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} \ (b \neq 0).$

26) Simplify:

$$\sqrt{14} \cdot \sqrt{21}$$

$$\begin{array}{l} \sqrt{5} \cdot \sqrt{7} = \sqrt{35} \\ \sqrt{8} \cdot \sqrt{2} = \sqrt{16} = 4 \\ \sqrt{48} = \sqrt{16 \cdot 3} = \sqrt{16} \cdot \sqrt{3} = 4\sqrt{3} \end{array}$$

$$\frac{\sqrt{8}}{\sqrt{2}} = \sqrt{\frac{8}{2}} = \sqrt{4} = 2 \qquad \sqrt{\frac{25}{64}} = \frac{\sqrt{25}}{\sqrt{64}} = \frac{5}{8}$$

$$\sqrt[3]{5} \cdot \sqrt[3]{3} = \sqrt[3]{15} \qquad \frac{\sqrt[4]{12}}{\sqrt[4]{4}} = \sqrt[4]{\frac{12}{4}} = \sqrt[4]{3}$$

27) Simplify:

$$\sqrt[3]{-16x^2y^3z^4}$$

8.3 ADDING AND SUBTRACTING RADICALS

Add and subtract like radicals by using the distributive property. *Only like radicals can be combined in this way.*

28) Simplify:
$$\sqrt{7} + \sqrt{8}$$

$$2\sqrt{5} + 4\sqrt{5} = (2+4)\sqrt{5}$$

$$= 6\sqrt{5}$$

$$\sqrt{8} + \sqrt{32} = 2\sqrt{2} + 4\sqrt{2}$$

$$= 6\sqrt{2}$$

29) Simplify:
$$\sqrt{8} - \sqrt{27} + \sqrt{50} + \sqrt{48}$$

8.4 RATIONALIZING THE DENOMINATOR

The denominator of a radical can be rationalized by multiplying both the numerator and denominator by a number that will eliminate the radical from the denominator.

8.5 MORE SIMPLIFYING AND OPERATIONS WITH RADICALS

When appropriate, use the rules for adding and multiplying polynomials to simplify radical expressions.

Any denominators with radicals should be rationalized.

If a radical expression contains two terms in the denominator and at least one of those terms is a square root radical, multiply both numerator and denominator by the conjugate of the denominator.

30) Rationalize:

$$\frac{2\sqrt{3}-5}{\sqrt{24}}$$

$$\frac{2}{\sqrt{3}} = \frac{2 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}} = \frac{2\sqrt{3}}{3}$$
$$\sqrt[3]{\frac{5}{6}} = \frac{\sqrt[3]{5} \cdot \sqrt[3]{6^2}}{\sqrt[3]{6} \cdot \sqrt[3]{6^2}} = \frac{\sqrt[3]{180}}{6}$$

$$\sqrt{6}(\sqrt{5} - \sqrt{7}) = \sqrt{30} - \sqrt{42}$$
$$(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3}) = 5 - 3 = 2$$
$$\frac{3}{\sqrt{6}} = \frac{3\sqrt{6}}{6} = \frac{\sqrt{6}}{2}$$

$$\frac{6}{\sqrt{7} - \sqrt{2}} = \frac{6}{\sqrt{7} - \sqrt{2}} \cdot \frac{\sqrt{7} + \sqrt{2}}{\sqrt{7} + \sqrt{2}}$$

$$= \frac{6(\sqrt{7} + \sqrt{2})}{7 - 2}$$

$$= \frac{6(\sqrt{7} + \sqrt{2})}{5}$$
So

Multiply fractions.

Subtract.

31) Rationalize:

$$\frac{2\sqrt{3}+5}{2\sqrt{3}-5}$$

8.7 USING RATIONAL NUMBERS AS EXPONENTS

Assume that $a \ge 0$, m and n are integers, and n > 0. Then

$$a^{1/n} = \sqrt[n]{a}$$

$$a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

$$a^{-m/n} = \frac{1}{a^{m/n}} \quad (a \neq 0)$$

9.4 COMPLEX NUMBERS

The imaginary unit is i, where

$$i = \sqrt{-1}$$
 and $i^2 = -1$.

For the positive number b, $\sqrt{-b} = i\sqrt{b}$.

Addition

Add complex numbers by adding the real parts and adding the imaginary parts.

Subtraction

To subtract complex numbers, change the number following the subtraction sign to its negative and add.

Multiplication

Multiply complex numbers in the same way polynomials are multiplied. Replace i^2 with -1.

Division

Divide complex numbers by multiplying the numerator and the denominator by the conjugate of the denominator.

$$8^{1/3} = \sqrt[3]{8} = 2$$

$$(81)^{3/4} = \sqrt[4]{81^3} = (\sqrt[4]{81})^3 = 3^3 = 27$$

$$36^{-3/2} = \frac{1}{36^{3/2}} = \frac{1}{(36^{1/2})^3} = \frac{1}{6^3} = \frac{1}{216}$$

$$\sqrt{-19} = i\sqrt{19}$$

Add:
$$(3+6i) + (-9+2i) = (3-9) + (6+2)i$$

= $-6+8i$

Subtract:
$$(5+4i) - (2-4i) = (5+4i) + (-2+4i)$$

= $(5-2) + (4+4)i$
= $3+8i$

Multiply:
$$(7 + i)(3 - 4i)$$

= $7(3) + 7(-4i) + i(3) + i(-4i)$ FOIL method
= $21 - 28i + 3i - 4i^2$
= $21 - 25i - 4(-1)$ $i^2 = -1$
= $21 - 25i + 4$
= $25 - 25i$

Divide:
$$\frac{2}{6+i} = \frac{2}{6+i} \cdot \frac{6-i}{6-i}$$

$$= \frac{2(6-i)}{36-i^2}$$

$$= \frac{12-2i}{36-(-1)} \qquad i^2 = -1$$

$$= \frac{12-2i}{37}$$

$$= \frac{12}{37} - \frac{2}{37}i \qquad \text{Standard form}$$

Complex Solutions

A quadratic equation may have nonreal complex solutions. This occurs when the discriminant is negative. The quadratic formula will give complex solutions in such cases.

Solve for all complex solutions of $x^2 + x + 1 = 0$.

e for all complex solutions of
$$x^2 + x + 1 = 0$$
.

$$x = \frac{-1 \pm \sqrt{1^2 - 4(1)(1)}}{2(1)}$$

$$a = 1, b = 1, c = 1$$

$$x = \frac{-1 \pm \sqrt{1 - 4}}{2}$$

$$x = \frac{-1 \pm \sqrt{-3}}{2}$$

$$x = \frac{-1 \pm i\sqrt{3}}{2}$$

$$\sqrt{-b} = i\sqrt{b}$$

Solution set: $\left\{ -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i \right\}$

9.5 MORE ON GRAPHING QUADRATIC EQUATIONS; QUADRATIC FUNCTIONS

To graph $y = ax^2 + bx + c$,

Step 1 Find the vertex: $x = -\frac{b}{2a}$; find y by substituting this value for x in the equation.

Step 2 Find the y-intercept.

Step 3 Find the x-intercepts (if they exist).

Step 4 Plot the intercepts and the vertex.

Step 5 Find and plot additional ordered pairs near the vertex and intercepts as needed.

Graph $y = 2x^2 - 5x - 3$.

$$x = -\frac{b}{2a} = -\frac{-5}{2(2)} = \frac{5}{4}$$
$$y = 2\left(\frac{5}{4}\right)^2 - 5\left(\frac{5}{4}\right) - 3$$
$$= 2\left(\frac{25}{16}\right) - \frac{25}{4} - 3$$
$$= \frac{25}{8} - \frac{50}{8} - \frac{24}{8} = -\frac{49}{8}$$

The vertex is $(\frac{5}{4}, -\frac{49}{8})$.

$$y = 2(0)^2 - 5(0) - 3 = -3$$

The y-intercept is (0, -3).

$$0 = 2x^{2} - 5x - 3$$

$$0 = (2x + 1)(x - 3)$$

$$2x + 1 = 0 or x - 3 = 0$$

$$2x = -1 or x = 3$$

$$x = -\frac{1}{2} or x = 3$$

The x-intercepts are $\left(-\frac{1}{2},0\right)$ and (3,0).

		у Å
X	У	1
$-\frac{1}{2}$	0	2
0	-3	-2 1 2 4 × x
54	$-\frac{49}{8}$	-2
2	-5	4\ 1
3	0	-6
		$y = 2x^2 - 5x - 3$ $\left(\frac{2}{4}, -\frac{5}{8}\right)$