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Abstract

We wil l  d iscuss a simple procedure to construct an arbi trar i ly c lose piecewise

l inear approximation of a circ le and, in the l imit ,  the circ le i tsel f .  Beginning

with a square, the inscr ibed circ le may be better approximated by replacing

each vertex of the square with a line tangent to the circle forming an octagon.

By repeatedly applying this algorithm to the resulting figures, closer approx-

imations may be obtained. First ,  we wi l l  adapt this procedure to Chaikints

algorithm, rnodifying it to produce rational curves in IR2. Next, extending this

method to IR3, we wi l l  consider a cube to be a piecewise planar approximation

of i ts inscr ibed sphere. Better approximations wi l l  be obtained by bevel-cutt ing

each edge of the cube with a plane tangent to the sphere. In the l imit ,  this

process wi l l  y ield the sphere i tsel f .

vili



Chapter 1

Introduction

11 Computel  Aided Geometr ic Design (CAGD) the representat ion of general  shapes is a

fundarleutal problern. Parametric B-spline sutfaces, including B6zier patches, are often

uscd by design systerns to model free-form shapes. Trvo of the most commonly used regular

shapes nre tire ellipsoid and tlie special case sphere. We would like representations of these

to be casily defined, cluiclily generated, and mathematically accurate. Polynomial B-splines

do uot lcnd themselves to accurate representations of ellipsoids and spheres; we must resort

to no1-uniforrn rat ional B-spl ines (NURBS). Suppose rve wanted to model a hemisphere.

A stlaightfolrvard mcthod is to create a geodesic arc from the pole to the equator using a

rational B-spline. Ihen fonn the surface by revolving this around the pole. This creates

a bi-quadratic B-spline surface. I{owever, the surface is degenerate since one of its edges

collapses to a single point at the pole. There are many reasons we may want to calculate

the surface nolmals of the hemisphere, including shading during rendering, but it is very

di{licult to calculate the normal at this degenerate pole. There are other til ing schemes [3]

and rve rnay resort to rational triangular B6zier patches. Ilowever, a rational quadratic

B6zicl  patch is inadecluate; we must use a rat ional quart ic patch [B].

Wit[ the speed and memory of our current generation of graphics workstations, an old

paradigm is regaining popularity - the surface based upon a mesh of control points with an

arbitraly topology. These geometric methods, commonly called corner-cutting, whittling, or

uoodcaruers algorithms [4], are extensions of the NURBS techniques to an arbitrary mesh of

control points. This arbitrary mesh, extended from the rectangular mesh of NURBS, aJ.lows

great {lexibiiity in the model's definition, and the sirnple geometric algorithm insulates the



user from the mathematical details. The current methods, initially developed by Doo and

Sabin [5] [6] and Catmull and Clark [1] are based upon the subdivision rules for quadratic

and cubic uniform B-spline surfaces respectively. The formulation allows us to specify an

arbitrary underlying topology for a mesh structure and specifies a procedure so that the

mesh can be successively refined to represent a closer and closer approximation to the

surface. T}rese surfaces, rvhich have been shown to be tangent-plane continuous, can be

modified by alternate subdivision masks [10] to represent surfaces with edges, darts, and

cusps, giv ing a tremeudous variety of surfaces possible.

ry\/e wish to add to these methods by specifying a method that works on a decidedly

different geometrical paradigm, edge-cutting. We propose not to cut the corners but to bevel

the edges to produce our surface. In this paper we develop a method to obtain piecewise

planar approximations of ellipsoids and spheres by cutting the edges from rectangular prisms

and cubes, respectively, and repeatedly applying the method to the results.



Chapter 2

Background

There is a common method used by sailboat builders to create a cylindrical wooden mast

from a rectangular column. On a full-sized drarving of the column's cross-section, the desired

cross-scct ion of the f in ished mast is drawn (Figure 2.1).

Then, tangent lines to the finished shape are drarvn so that the column's corners are

removed. Using these tangent lines as a reference, marking gauges are constructed and used

to transfer the reference lines to the faces of the column. Then the edges are removed by

either sarving or planing to these reference lines, crcating a new face for each of the original

edges. This process is repeated on the nerv edges until the column is smooth enough for final

sanding. The resulting mast may be circular if the original column is square. Any other

oval shape may also be produced. From the trvo-dimensional drawings this corner-cutting

rnethod has been extruded to the three dimensions of thc rvooden column.

2.L Chaikin's Algorithm

In 1974 G. M. Chaikin [2] presented his algorithm for generating curves from data points.

Giveu a curve represented by the control  points Po, Pr,  P2, and P3, this method generates

a curve that is tangent to the l ines P1P2, and P2P3 at the mid-point of  each (Figure 2.2).

The curve is generated by dividing each Ine into thrce parts so that the ratio of the

parts is I  :2 :  1.  Then, the corners are removed by connect ing the new points adjacent

to each corner. This process may be applied repeatedly until the desired smoothness is

achieved. In the limit, the resulting curve will be made up of parabolic segments and is a



Shaded areas removed bv f i rs t  cut

M a r k i n g

Figure 2.1: Cross-section of \A/ooden lr{ast

uniform quadrat ic B-spl ine.

2.2 Doo's Algor i thm

A method to extend Chaikin's algorithm to three dimensions was presented by D. W. H.

Doo [5] in 1978. Given a polyhedron composed of vertices and faces, new smaller faces are

formed that result in a smoother polyhedron (Figure 2.3). In this method, the centroid

of each face is found. New vertices are obtained by combining the centroid of a face with

each vertex of that face using a rveighting function. Given an z-sided polygonal face with

ver t i ces  P0,  . . . ,  Pr -1 ,  the  cent ro id ,  C ,  i s :

Tangent  l ines
marked at  corners

Cross sect ion of  f in ished mast
drawn on fu l l  s ize column plan

G u a g c



Figure 2.2: Chaikin's Algorithm

't n-7
r r - ^ \ - p .

, /  . L  2

t o  '  ^

by n nerv points called face points. A new face point,Each valence n vertex is replaced

Pf+l ,  f rom a ver tex,  Pf  ,  is :1

p f + l  = l , r f + ( t - r ) c f

rvith the usual value for I = ]. fnis results in three types of new faces:

1We wil l  denote the leuel of ref inement by the superscript k. The original control polygon or polyhedron
is  a t  leve l  & :0 .  A f te r  one te f inement  i t  i s  a t  leve l  &  =  1 .



Cub  e One re f inement

Figure 2.3: Doo's Algorithm Applied to a Cube

o Type F (formed by face): a new smaller face that replaces one of the original faces.

This type of face rvill have the same number of edges as the original and will be smaller

than the or iginal .

o Type V (forrned by vertex): A face that replaces each original vertex. These faces
rviil have the same number of edges as the valence of the original vertex.

o Type E (formed by edge): A face that replaces an edge between two original faces.

These will have four edges.

Using this method, new polyhedra are produced that are composed of all three types
of faces. For each n-sided face a new, smaller n-sided face is produced. These faces always

remaiu rz-sided and gradually get smaller, converging to the centroid. Each vertex of valence
m produces a new rn-sided face that becomes a sma.ller m-sided face of Type F. Each edge
betrveen faces is replaced by a four-sided face that becomes a four-sided Type F face as it
is processed. Doo demonstrated the resulting objects that are obtained when this method
is applied to a cube using various rveighting functions to define new vertex points.



2.3 Review of Conics as Rational Quadratic Curves

A fundamental result in CAGD is that conic sections can be written as rational quadratic

curves. In this section we revierv much of this material, rvriting the conic section in standard

form as a rational quadratic B6zier curve.2 Although there are many different ways to define

conic sections) we will define them as follorvs: a conic section in IR2 is the perspective

projection of a parabola in 1?3 onto a plane. Considering rotations and translations, this

plane is usually considered to be the plane tu = 1, and points on the parabola of the form

[ , " ]  i " ll l , . \ . r l l .
|  ,y I are usually associated with (projected to) the point I  y I in the plane w = I.
l l l l
l w j  L 1 J

Suppose we are given a conic,  C(t) .  Let P(t)  be a corresponding parabola that projects

to C(t) .  Since P(l)  is a parabola, rve can rvr i te i t  in B6zier form as

P( l )  =  PoBo,2( t )  +  PtB1,2( t )  +v2n2,21t1

rvliere P; =

\\/e can

are points in lR3, and the B;,2 are the quadratic Bernstein polynomials.

( l )  as

r, l t)

g , ( t )
1
I

2

\ -  P ;B;  r ( t )
D
t - n

w(t)x , ( t )

u( t )y , ( t )

w ( t )

l , ,  l
l Y ,  l

L ' ' l
rvrite C

c(r)  :

Clearly then, the parabola can be rvr i t ten

P ( t )  =
w(t ) r , ( t )

u( t )y . ( t )

w( t )

rvhere  u( t )  =  wsBs,2( t )  |  w181, ( t )  * as this projects to C(t). Now, we can write

AS

t
I
L
, z ( t ) ,wzB

'N{ost of this section rvas adapted from pages 233-237 of [8].



'"(r) [DLo
v.(r) [D?=o

[D;2=o tui

u;B;,2(t

w;B;,2(t

ar,r(Df

f ' " t t '
I u"U)
L 1

)l
)l

and,  t l ierefore,  we can

and if rve set

rvr i te the conic sect iou as

(1t a\  _ PoB6,2(t)  + Pr.Br,2( l)  + e2Br,r1t1
v \  c , ,  -

= fi',r,,,r'l]

gi
1!i

lL

1

P i =

Inen

r r  /  r  \  _  u  sp  s  B  s ,2 ( t )  *  w  tp  t  B  t , z ( t )  *  w2p2  B  2 ,2 ( t )
v \ e , /  . -

We call the points p; the control points of the conic and the numbers u; the weights of

the colresponding verticcs. Thus, the conic control polygon is the projection of the control

polygon

A Circ le  as a Rat ional  Quadrat ic  B6zier  Curve

Consider the pararnetric equation

r ( t )  =

v( t )  =

r t
l ' r l
t l
l a ; l

L ' ' J
rvhich is the control  polygon of the 3d parabola, P, that we projected into C.

Tlris form is called the rational quadratic forrnof a conic section. If all weights are equal,

we obtain the non-rat ional conics ( i .e. ,  parabolas).

t t 2

Tliz
2 t

T+P



for 0 ( t < 1. \A/e can shorv that this equation forms a quarter circle by calculating
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Thus al l  points of the curve l ie on the unit  c i

quarter circle in the first quadrant is traced.

This impl ies that the rat ional quadrat ic B6zi

I tao,1t1 + rBt,2(t) + orr,r(r) 
'l

I  orro,r(r)  + 1Br ,z(t)  1- 282,(t)  |  =
t - ' - " 1
L rBo,2( t )  +  IB t ,2 ( t )  +  282,2( t )  )

:

is a circ le.  The three control  points that dcf ine t

[ ' l
( P o , P r , P r l  =  

|  O  I
L ' l

This translates into the projected control  points

f  ' l [ ' l
t t l l

l o l l ' l
L ' J  1 1 . ]

rv i th  tug :  1 ,  u l  :  I  w2 :  2 .



Reparameter iz ing the Curve into Standard Form

We can put this circle into an alternate form, called standard form, with t s - rr2 = 1. To

do this, we make a parameter change3 replacing t by

L

J r - l \ ' t
t t t L - L t ' - t - L

and (1  -  l )  by

c(t)

I r r  our case) p -  , /2, 'ws

Simplifying the equation of the conic after tli is reparameterization, we obtain

r-r i t  _ p2-opoBo,z(f)  + pwprBr,r( i )*  u2p282,2(t)
v \ r , l  -

rvhere the p; are the plojected control points of the rational quadratic above. If

P = ,lY2
v ?ro

then the equat ion of the circ le can be rervr i t tcn as

_ 
.zpo a o,z( l  + VEo.p t  

B t ,z( t )  + .zpz Bz,z( i )

wz B o,zj,) + r/#"r t B r,z(D * w2 82,2(i)

-  'ut  :  1,  and w2 :2, and rve obtain

,a/ +\ _ 2p6Bs,2G) + l lprhl(f) + 2p282,2(t)
v \ ' /  -

After dividing all the weigltts by 2 (rvhich divides both numerator and denominator by 2

and mal ies no change in the curve),  we obtain

ra  I  t  \  -  po Bo,zf t )  +  $v t  B t ,z( t )  +  pzBz,z( t )
v \ & /  -

rvhich is in standard form.

Therefore, we can rvrite our quarter circle as a rational quadratic curve with projected

control  points

0

1

I

v z
2

v !
2

v !
2

1

0

1

3See Far in  [8 ] ,  page 236.

1 0



Chapter 3

Two Dimensions

3.1 Construct ing a Circle from a Square

We rvill prescrtt a method to construct a sphere by refining a cube. To lay a foundation

for this rve rvill examine the trvo-dimeusional case. This will give us insight into the three-

dimensiottal case. Ihe procedure we rvill usc is a generalization of a simple algorithm that

creates a circle from a squarc by first cutting off the corllers of the square and successively

cutting the corners of the resulting objects. Tliis algorithm can be easily defined if rve start

rvith a basic square of side lcngth 2 shorvn in Figure 3.1. We inscribe a circle in the square,

rvhich rvill have radius 1.

Figure 3.1: Circle Inscr ibed in a Square

1 1



This square has four sides, each of which is tangent to the circle, and each has its
midpoint on the circle. Our reflnement procedure will iteratively prod.uce polygons that
have a similar structure: after the &th iteration the polygon will have 2kt2 sides, each of
which has its midpoint on the circle. We can illustrate this procedure by showing the results
of successive applications of the refinement. We begin by cutting off the four corners of the
square.

Consider an arc of the circle betrveen two consecutive points where the square and circle
coincide. We construct the tangent line to this arc at the midpoint of the arc. Using this
tangent line as a cutting plane, we can cut off the corner and construct a new polygonal
shape rvhere the corner of the square has becn removed (Figure 3.2).

Tangent
line

This area
is removed

Figure 3.2: Corner of the Square

If we do this process for each of the four quadrants, we obtain the new polygonal shape
shorvn in Figure 3.3 with the circ le inscr ibed in i t .

We have doubled the number of segments in the approximating polygon - square to
octagon. We now perform a similar gcometric operation on this figure (Figure 3.4). Consider
the arc of the circle between successive points on the control polygon that are tangent to
the circle. construct the tangent line to the midpoint of this arc.

Cut off the indicated region using the plane of the tangent line as the cutting plane. If
$'e do this for each of the eight circie segments betrveen successive points where the circle
aud octagon intersect, we obtain a new polygonal shape which is shown in Figure 3.5:

This polygon has sixteen edges each tangent to the circle. Each of the edges has its
rnidpoint on the circ le.

Midpir t t /

I 2



Figure 3.3: Square Refined to Octagon

This area
is rernoved

Figure 3.4: Corner of the Octagon

The gcnerai idca rvitir this algorithm is to continue this process indefinitely. Visually,
the polygons generated can be seen to be converging to a circle, and it is easily seen that
geometrically this is also the case. In general, we are creating, with each iteration of this
algorithm, a polygon for rvhich all edges are tangent to the circle. In the &th iteration, the
polygon will have 2&+2 edges, and the midpoint of each edge will be a point on the circle.

3.2 Defining the Algori thm Geometr ical ly

3 .2 .1  F i r s t  Me thod

Consider a control polygon (Figure 3.6) that represents a square containing the four control
p o i n t s  P o  =  ( - 1 , - 1 ) , P 1  =  ( - 1 , 1 ) ,  P z :  ( 1 , 1 )  a n d  p 3  =  ( 1 , _ 1 ) .

1 3



Figure 3.5: Sixteen-sided polygon

Using tlte general outline of the algorithm given in section 8.1 above, generate a refine-
ment of this control  polygon by def ining a new set of coutrol  points

w h e r e f o r 0 ( i ( 3 ,

each of the control points P|; and plo*, is on the line segment Fffi, ur,d

the line F -F is tangcnt to the circle at the point where the line from the center
of the circle to P; intersects the circle.r

For example, exarnine the upper r ight-hand quadrant of the polygon in Figure 3.2:
In calculat ing the exact posi t ion of pl  on the l ine Frpr,  we can see that dr = 2 _ r t .

and the point Pl is defined by

{n6, nl ,  p},  p3, pl ,  p},  pA, p+}

Pt = ( r -+)  " ,*Tr ,
= tr ,*(- t)" ,
= ( ,  -  +)p ,+*p,
=  l o P r  *  ( 1  -  t o ) P 2

'We note that our subscripts a.re al l  rvr i t ten modulo g.

t 4



Figure 3.6: Inscr ibed Circle:  Method One

rvhere lo :  I  -  
V By symmetry Pl is def ined by

Pi  :  (1  -  to)  Pz *  tsP3

Considering, then, all four corners of the square, we can see that the refinemelt can be

descr ibed as

PL,

Pir+,

( 1  - r o ) P ; * t o P ; + r

l o P , * ( 1  - 1 6 ) P ; a 1

and rve obtain the nerv control  polygon that is shown in Figure 3.8:

For the next ref inemcnt rve calculate the control  polygon, {pl  ,  0 < i  < 16}.  An ex-
ample that i l lustrates this case is givcn in Figure 3.9:

Ilere rve have that

t . . P ! 2 + ( 1  - , 1 ) P l

( 1  - r r ) e l + r , e ]

p 2

p 2

d,
tt : '-a' t

rvhere



P 1

2 +
. l * a ' - {

Pi P2

Pl
II,-I

2

I
I
I
I
I
I

and /  is  the length of  an edge of  the octagon,  that  is

P3

Figure 3.7:  Upper Right-hand Quadrant

I  -  2 - 2 d o

=  2 - 2 ( 2 - " o l
= 2(J' _ r)

and

/  o . )  <o
.  a L . Q

C L t  =  - - t a n -' 2 2

=  2 ( J r - D  _ + ^ _ 2 2 . s o
2 " * " 2

\\:e can then calculate that l1 = 0.25989, which enables us to calculate the control polygon
in  F igure  3 .10 .

To generate the general value of l;, w€ refer to Figure 3.11, which illustrates an arc of
the circ le subtending an angle of 2d.

1 6



Figure 3.8: Control Polygon at Level ft = 1

In Figure 3.11 point P is at the intersection of trvo tangent lincs, each tangent to the
circle at the endpoints of the arc subtending an angle of d. P therefore lies on the line that
is the bisector of the angle d, and to calcula.te P from Ps and p1, we form

where

Simpl i fy ing 16,  we obta in

P : P o * l a ( P 1  - P o )

.  tan7 -  tan 4
t ^  -  L' u  -  

2 t a t 0

tang - tant
2tan 0

! (, -tr4\
2  \ -  t a n ?  )
.  /  s i n d  \

l l r - T r " Y 12 \  H )
I ( .  c o s d  \
t \ ' -  r + * t o )
r (  1  \
t  \ i  + . " - d i

f,, and substituting this into our formula for f6, we have

=; (# 'g )
Initially in our refinement d =

T 7



r--J
I a' l.-- d, --{

Figure 3.9: Quadrant Refined to Level k = 2

as before. Cont inuing this,  rve obtain

r l  1  \:  t \ * q )
(  1 \
t - l

\ z+ r t )
:  ( r -  a \

\  2 /

/ t \
{ . . - j  -  } = 0 . 2 5 9 8 9
\ l f c o s i i /

1
t .  -  |^ 8 2

aud in gencra. l

Lk = I '.- =; (- =+-t-)-  
\ r + c o s l r r v ) /

\\/e note that 11. -' { as ft -* oc. Thus, the value of I is based on the level of refinement.
Subdivision schemes that incorporate the levei of refinement into the algorithm are known
as non-stat ionary schemes. [7]
I f  the ini t ia l  control  polygon is rvr i t ten as {P!,P?,Pg,P!} then the elements of the kth
control  polygon can be wri t ten as

p5, = r r_,pf- '+ (1 -  r r_,)pf i i
pt,* ,  = ( t  -  t r ._r)pf- t  + i r_1pffr1

1 8



Figure 3.10: Complete Level k = 2 Control polygon

3 . 2 . 2  S e c o n d  M e t h o d

In this scct ion, we adapt the algori thm presented in sect ion 3.2.1to make i t  somewhat
simpler to analyze for our "non-circle" cases. In this adaptation, we represent the points
that are tangent to the circle as additional control points in the control polygon.

In the ini t ia l  case of the square, we now have eight control  points in Figure 3.12. This
lllay not look lil ie a big change, but it rvill enable us to analyze the circle in pieces. In par-
ticular, each piece is clefined by threc control points, two of which are tangent to the circle.
Take, for exaulple, Figurc 3.13, where rve have an ini t ia l  set of  control  points {p6,p1,p2},
and the  genera ted  re f inemcnt ,  {p3 ,  p l ,  e } ,  f  } ,  e } } .

In this case tlte refinement algorithm generates a new point tangent to the curve (p]),
and trvo new control  points,  (Pl  and pl) .  gV symmetry we have

P;

Pl

Pi

Pi

Pi

Ps

( 1 -  l d ) P o  *  t p P l
1 1

z P i  + ; P l
t e P t * ( 7 - t o ) P 2

P 2

1 9



f igure 3.11: Calculat ing lp

rvhere

* ^ ^  0  s i n O
L a L L  

1  1 * c o s  I cos d2  _  l + c o s d
s in  0 l * c o s dt-t d

Again, we initialize our iteration with d - 
fr and proceed with d = ,fu for k =

1 , 2 , 3 , 4 , . . .

Consider the length of the arc from point P6 to P2 (Figure 3.11). The point P| is at the

midpoint of this arc. Additionally, it lies on the line F;P; where P" is the center of the arc.

After one refinenent we have replaced point P1 rvith the edge Pl{-. When we consider

the arc from Pl to P], we notice that it is bisected by the line PlP". In general, when

we refine our control polygon from level A to level k + 1, we halve the arc length between

adjacent control points on the arc. Additionally, if control points Pf and Pf*, Le on the

alc, the linu FEf" bisects the arc from Pf to Pf*, and bisects the l.ine Pf'e[r. f.o-

the definition of a radian it follows tl 'rat we halve the angle between the radii to adjacent

control ooints on the arc when we halve the arc length between them.

cos d

20



Figure 3.12: Inscr ibed Circle:  Method Two

Cons idc l  the  ra t io  o f  t6  to  I  -  to .

cos d
1 *cos  d

r - t o I  cos0
r - -

r  +cos y

t6

cos d
1 *cos  d-

_t icos q _ cos d
r  +cos d I  *cos 0

cos d
I  *cos d

I
TTcd7
cos d

We rvi l l  cal l  the rat io of I  to 1_ t , the parametr ic rat io.  As
parametr ic rat io of 14 to 1 _ 16 is

t *  - " ^ . o - o
I -  t*  2k+t

fo r  &  =  0 ,7 ,2 ,3 , . . . ,  rvhere  a  i s  the  in te r io r  ang le2  be tween
edges. Iror the square, a = ; .

The general case can be rvritten as

Pf'  = Pf - t

p f , * ,  =  ( t  _  t r ._r  )p f - r  +
y t lvo rays emanat ing

tlre object is refined, the standard

(3 .1 )

the original (level ft = 0) adjacent

zr-'Pfii
from a point

2 I



T
I

Pi tano

T
tan $

Ir igure 3.13: Calculat ing the Arc of a Circle

Pt,*,
Pi;+.

P5o*o

t k =

We note tl iat 16 * | as ,t * oo.

iPTu*, +
tr-' pfii

pf;,'

* ' , ,*"
+ (1 - tr-r)Pf+-rt

cos rh
1 * c o s r #

3.3 Chaikin's Algorithm on Rational Curves

Tlre plocedule descr ibed in sect ion 3.2.2 may be thought of as an adaptat ion of Chaikin 's
algorithm (section 2.1) so that rational curves may be produced. Chaikin's algorithm may
be modified so that it rvill interpolate the end points by use of phantom control points to
replace the end points. We rvill consider a variation of Chaikin's algorithm that interpolates
the end points and modify this so that rational curves may be produced Consider an
original  (A = 0) control  polygon of z points

{ P o ,  P t ,  . . .  r P  r - 2 r P r . - r }

22



where points P6 and P'-1 ar€ tangent to the curve and all other points are non-tangentpoints (Figure 3.14). To refine the polygon to level & + t the modified algorithm ;s;
1' At level fr * 1 insert a ne'u tangent point at the midpoint of each edge that is boundedby two level fr non-tangent points. For example, to process the level a = 0 controlpolygon, we insert a revel ,t+ 1 nerv tangent point at the midpoint of every edge exceptP;F; and Fl_2F,_1. The resulring control polygon is

{pi ,  pr ,  p l ,  pr ,  p; ,  . . . ,  p l r"_nt ,  p,_3, pl1,_r)  ,p n_2,pJ1,_ry }
rvhere

P 6 = P o

Pl1,-r1 = Pn-r

P i ,  =  j r o , * p ; + r )
and points PA,pl( ,_r, , :  and pl ;  are tangent to the curve.

ff::.,:,j;"J :: 
^,oo"o,t metttod to define new rangent points. rhe midpoinr

p f , r , = 1 f o i + p f , )
2 \ - t ' ' z * 7 )' f  i rat  is,  t 'e .erv ta 'ge.t  point is at  the rnidpoi ' t  of  the ncw edge.

2'  separate the level a control  polygo'  into parts that contain three points:  tangent

i-I;1,::l'"r""t 
point, tange.t poinr. our originar contror polvgon would be sep-

{Pa, P?, Pl}

{P3, P3, Pli

{P11"-n1, Pl-r,  P31,-r;  }

{Pi1,-r;, Pl-r,Plr"-rl }
\ve norv have n - 2 contror polygons each of wrrich contains
to the curvc at i ts end poiuts.

) 2

three points and is tangent



3. Replace every non-tangent level & point, Pf , with two new non-tangent level ,t + 1

points, Pfil1rl*, and Pf.tl,)+z at, the midpoints of the edges adjacent to Pf .

P|tl,r*, = i("1 +pfil l,r)
"Ntl,r*, = i("f+PNl')

Coltinuilg rvith our example, rve rvould replace P! with P| and P) at the midpoints

of FoPl and P1Pl. Our completed Ievel & * 1 control polygons would be

tPA, Pl ,  Pl ,  Pl )

{Pl ,  Pl ,  Pl ,  PA}

{Plt ' - .1, P11,,-o;+r, P11,.-r ;1r,  Plt ' -"1}

{Plt"- .1, Pl1"-. ;*,  '  Pl1'- . ;+r,  Plr ' -r l }

For example, in Figure 3.14 we are given the control  points {Po,Pr,Pz,Ps} and may

generate a curve that is tangent to FoPr at Pe, to F:Fs at P3, and to F;P; at i ts

nidpoint.  \ ,Ve start  by adcl ing a new tangent point (Pl)  at  the midpoint of  P1P2 then

d iv ide  t5e  cont lo l  po lygon in to  two par ts ,  {P6,Pr ,P l }  and {P3,Pr ,P} } .  For  each ha l f  we

replace the cor lel  points,  P1 and P2, rvi th trvo new points that are at the midpoints of the

adjacent lincs. So rve have

P A = P s

P i  =  ( 1  - t ) P o * t P r

P l  =  ( 1  - l ) p l + r p r

P ]  :  ( 1  - r ) P r + t P 2

P l  =  ( 1  - r ) e l + r P z

P l  =  ( 1  - t ) P s * l P z

P l = P 3

1
- o

rvhere

, A



PA

Figure 3.14: I lnd-point Interpolat ing Chaikin 's

These nerv points are: Pl, P| to replace P! and Pl, Pl to replace P!. The separated

level & * 1 control  polygons are {Pl,  P1, P},  Pl}  and {Pl,  Pl ,  P},  Pa}.  This process may be

repeated until a piecewise linear approximation of sufficient smoothness is obtained, and,

in the limit, a piecervise parabolic curve is gcnerated.

Suppose rve wanted to use a Chaikin-like algorithm to produce a curve that is, in the

limit, piecervise circular arcs. Considering the example above, we will show that arcs of

cilcles may be generated provided the original control polygon satisfies

I  l -  |  l - l

l P o P ' l + l P r P 3  l = l P ' P ,  l

Until now, we have used the midpoint method to define new tangent points. At the initial

ievel, horvever, we cannot necessarily do this and produce circular arcs. In Figure 3.15 we

25



have two points on a circle,

to the circle at these points

Ps and P1, that

will intersect at

are not opposite each other.

a point Po.

The lines tangent

Figure 3.15: Tangent Line Intersect ion

If rve compare the lines PsPo and PlPo we will find that

l e ;q l= lu ;q l
The points P6, Pp, and P1 could be used as the control polygon for the arc of the circle

from Ps to P1. Using our proccss, c i lcular arcs require three-point control  polygons with

sides of eclual length. Therefore) we will not necessarily use the midpoint of FlFi for the

26



tangent point Pl .  Instead,Pl is chosenso that

P r P l

and

PIP,

P;P;

P;F;

Figure 3.16: Rat ional Chai l i in 's to Produce Arcs of Circles

Once rve have guaranteed that the edges of our separated control polygons are of equal

lengtli we may return to the midpoint method for choosing our new tangent points. With

the insertion of P| we separate our original control polygon into two parts. Part a is

{P3,Pz ,P l }  and par t  b  i s  {P l ,Pz ,PA}  rvhere  PA =  P3 and P}  -  P8.  Po in ts  P l ,  P l ,  P l ,

and P| are obtained using ratios. These ratios are based on the angles between the sides

of the separated control polygons. The nerv tangent point Pl is

P l : ( 1  - l o ) P r * t o P z

27



rvhere

The new non-tangent points are

rvhere

(1  -  10 , . )  Po  *  lo ,oPr

(1  -  ro , " )  Pr  *  to , ,P l

lr;F; I
lpF; I

Pl

Pl

cos dn ̂
L O n  -

I  +  C O S Y n ^

and

( 1  - r o , a ) P 3 + t o , a P z

( 1  - t o , a ) P g * t o , D P z

rvhere

.,,0 = . T$*-
1 { cos de,6

,  [  
/  \ ' l

, ,  L t  _ r / ( P i - P z ) . ( P e - P z )  \ lu ' , b :  - l i i - c o s ' 1 f f i t t- L  \  l F l & l l n n l  ) )
Notice that rve do uot use ds = ! for our initial refinements. The initial value, 96, is ] the

supplement of the inter ior angle betrveen adjacent edges.

Th is in i t ia lang le (a) isca l led  theparentandth isva lue isusedateach leve l  as i tsch i ld rcn

are refined. Using the original interior angle (a) between adjacent sides, the general form

for d is

o .  - T - Q, r  _  
2 * + t

When we are refining a circular arc, we may measure the interior angle (/) between

adjacent edges at any level A of relinement and find

"  tA '+  r

Pi

P l

28



k = 2

Figure 3.17: Measured Angle at Level k = 2

For example, in Figure 3.17 rve have refined our quadrant twice (k = 2).

Tlre intcr ior angle ( /)  is measured to be f  and a = +.d2 is calculated to be

A ^ -

!
2 the supplement of /  is

^ - T -

2

7f

I O

rad ians
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3.4 Ell ipses

Consider an ellipse centered on the origin with its axes aligned with the o and y axes of the

form
12 u2

o + f i = r
We may scale this ellipse by D' resulting in an ellipse with a minor axis of one and the

same rat io of major to minor axes.

Figure 3.18: Sphere Scaled to an El l ipse

Lett ing

n'e have an ellipse

Norv compare this to

n 2

D,

t -
1 t '  -  |

on the origin

) -
g  - L

t 2

t
L- +
A 2

centered

t

the unit circle
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Figure 3.19: Control  Polygon of an El l ipse

Figure 3.18 rve may tal<e any point P"(r ,y) on the unit  c irc le and scale i t  to a corre-

spond ing  po in t  P"  (Ar ,A)  on  the  e l l ipsc .  [9 ,  pages  201-210]

Simi lar ly,  we lnay take a square rvi th vert ices (*1,*1) that can be used as the control

polygon for the unit  c irc le,  stretch i t  into a rectangle with vert ices (*,4. , t1),  and use i t  as

the control  polygon of the el l ipse (Figure 3.19)

f i + o ' : t
Consider two non-opposite points,  Pf i  and Pt,  on a circ le in Figure 3.20. Lines tangent to

the circle at tliese trvo points intersect at P". We may generate the midpoint, Pi, of the arc

between them using the standard parametric ratio3 where a is the interior rollu b"r*u"o

the lines PfiP" and P'f '. If rve scale the r coordinates of these points by A we will obtain

the corresponding points on the el l ipse, P6, Pi,  and Pi.

We may refine each quadrant individually. Starting with the upper right quadrant in

Figure 3.21, rve use the same method as in sect ion 3.2.2, using the standard parametr ic

ratio cos ffi The parent angle (a) is the angle between a pair of original adjacent

3See Equat ion  3 .1  on  page 21

a 1



Figure 3.20: Scaling a circle to an Ellipse

edges. To refine elliptical curves, rve rvill require that the parent angle (a) is f. As shown

in Figure 3.17, rvhen refining a circular arc) we may stop at any level ,t, measure the

supplement of the interior angle between any two adjacent edges, and find 1, 1o 69 ff.
This is not the case rvith the rectangle; the scaling transformation, while affine, is not angle

prcserving. I{orvever, if we use standard parametric ratio cos ffi in our refinement and

begin with all a angles of fr, the resulting curve will be piecewise elliptical. Refining the

rectangle to level A using this non-stationary ratio is equivalent to refining the square to

level A and thcn applying the scaling transformation to the resulting figure.

For example, in Figure 3.22 we are given a control  polygon, {Po,Pr,Pz,Ps,Pa}.  We

begin by inserting nerv tangent point Pl at the midpoint of Pifi. and P] at the midpoint of

F ;F ;  Now each sec t ion ,  {PA,Pr ,P l } ,  {P l ,Pr ,P} } ,  and {PA,Pr ,P} }  i s  p rocessed.  Note

that P[ = P$ and PJ = Pn. In this example, the first arc is tangent to P[ and P], the

second is tangent to Pl and P|, and the third is tangent to P[ and P[. The arc from Ps

to Pl is t l ie arc of a circ le since

l P n P ' l = l P A P " l
l - - t - l

'.t.)



+ t

(  I  - t )

----T----

i
I

1 - t

I
rh---*-

I
t

-L
= cos -r a = t t  / 2

Figurc 3.21: Quadrant of an El l ipse

Figure 3.22: Ptecervise Elliptica"l Curve



3.5 New Tangent Point Selection

When rve getterated arcs of circles in section 3.3, we chose a value for t such that the new
tangent point, Pl, was not guaranteed to be at the midpoint of FIE (see Figure 8.16).
However, in section 3.4 we used midpoints for our new tangent points to generate ellipses
(see Figure 3.22).In general, we are free to chose the level & = 0 new tangent points as we
please' To obtain arcs of circles, the nerv tangent point was chosen so that each separated
control polygon rvould have edges of equal length; this is a requirement of circular arcs.
For rational curves we rvill always choose the midpoint of the new edge as our new tangent
o  o i  n t .

Figure 3.23: Closed Piecewise trll iptical Curve

In Figure 3.12 of sect ion 3.2.2 we chose points ps, p2, pa, and p6 at the midpoints
of the stluate's edges so that they would be on the inscribed circle. If we choose different
new tangent points at level A = 0 and, then, for A = r ,2,9,4.. . ,  use the midpoint method
to def ine ner 'v tangent points and the standard parametr ic rat io,  cosff i ,  where a= f  , ,we
rvould generate a closed curve made from elliptical arcs. In Figure 3.23 the tangent points,

' ) A



Po, Pz,  P4,  and P6 were chosen so that

lFrT,+' I
lrur;l :

for i  = 1,3,5,7 wit l i  a l l  subscripts modulo B.

With appropriately chosen nerv tangent points it is possible to begin with any polygon

that has all of its sides tangent to the circle and refine it to produce the circle. To do this we

use a different a for each section so that each is equal to the interior angle of that section.

3.6 Sheared Circles and El l ipses

Figure 3.24: Sheared Circle

I f  rve apply a shear transformation to the square (+1,+1) along the c axis,  we get the

para l le logram (1  +  S,1) ,  (1  - ,9 , -1 ) ,  ( -1  - ,5 , - l ) ,  and ( -1+  ^5 ,1) ,  such tha t  every  po in t

(z,y) on the square becomes a point (r  *  Sy,9) on the paral lelogram [9, pages 201-210].

Again, we may create a sheared circle by applying the shear transformation to each point

on t l re circ le (Figure 3.24)4.

{We note that  a sheared c i rc le and a sheared el l ipse are both el l ipses

( o , t )

(x+Sy,y)



( 0 , 1 )
I t-f* r-t--l'  I  ' ( l + s , t )

c= t r  / 2

Figure 3.25: Sheared Scluare Control Polygon

We rler"y obtain the same results by beginning rvith the parallelogram as our control poly-

gon and ref ining i t  using the nidpoint method frorn sect ion 3.5 and the standard parametr ic

rat io,  cos f f i ,  rv i th cv = t  ( I ' igure 3.25).

Wlicn rve apply botii a scaling and shearing transformation to a square, we have another

parallelogrzrm (Figure 3.26). \Ve may use this for our control polygon and obtain a sheared

ellipse when the refinement method is applied.

If rve consider an octant of this parallelogram, we find that it may be used as a model

for a general trvo-dirnensional control polygon. In the general case (Figure 3.27), using the

rnidpoint method and the standard parametr ic rat io,  this method produces curves that are

piecervise el l ipt ical  arcs.

G iven a  cont ro l  po lygon,  {Po,Pr ,Pz ,Ps} ,  we inser t  P}  a t  the  midpo in t  o f  F1P2.  As

before, we begin by breaking this into trvo control  polygons, {PA,Pr,P}i  and {Pl,P2,PA},
and proceed as above. Flele we have two elliptical arcs. The flrst is tangent to P6 and Pj,

and the second is tangent to Pl and P3.

- tI

/

J tJ



F,-f-,-t--1( 0 , 1 ) ( l+s, t  )
( s , 1 )

Figure 3.26: Parallelogram Control polygon

R

,>

( l  -  t )

a = r / 2

T - a
cos 

l t i  -  rr

Figure 3.27: Piecewise Eliiptical Curve
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Chapter 4

Three Dimensions

We rvill extend the method presented to refine a control polygon into a circle so that we may

refine control polyhedra into a sphere. To that end, we rvill lay groundrvork for operations

and relat ions in three dimensions.

4.t Prel iminaries

4 . 1 . L  P l a n e s  a n d  L i n e s

Project ing a Point onto a Plane

Given a plane def ined by a point,  P, and a normal vector,  d r ,  consider a point,  Q, and a

vector direction, 6,in IR3. We calculate the projection of Q onto the plane in the direction

of the vector d, by calculating the intersection of the line

Q - t i

and the plane, as in Figure 4.1.

In this case, we have that the vector ((a - t,u-) - P) must Iie in the plane, and so

o  -  ( ( Q + t d ) - P ) . d

= ((a -  P) + l " - )  .? i

=  ( ( a  _  P )  . d )  +  ( t 6 . f r )
lWe assnme al l  normal  vectors.  r i .  are uni t  vectors
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Figure 4.1: Project ing a Point onto a Plane

\\/e have

, _  
( P - Q )  ' t

i . i i
and the projccted point of  intersect ion R is equal to

R = Q * ( P ' Q ] ' ' ; r t
u . n

Project ing a Vector onto a Plane

Givcn a plane defined by a point, P, and a nomral vector, d, and a vector, d, in l?3
(Figure 4.2). We calculate the projection of o-onto the plane by calculating the intersection
of  the  l ine

( P + d )  - i ' ;

and the plane.

This follorvs exactly tlie treatment of the above case, rvith Q replaced by p + 2- and rj
replaced rvith -d. \Are obtain

0  -  
[ P + t + t ( - i i ) - p ]  . d

a +  ,=  [ u  +  r ( - ? L ) ] . n

=  6 . i i - t

vector. Therefore,

t  =  i . 1 7

39
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Figure 4.2: Projecting a Vector onto a Plane

and thc vector  pro ject ion o 'o is  equal  to

6p = i  -  16' f r l i i

Closest Point on a Plane to a Point

Given a plane, 2, defined by the point-vector pair (P, i), we may find the closest point, R,

on this plane to a point, Q, by projecting Q onto P along normal vector d. Using the same

method as above, we have:

R  =  p - ' l F - Q )  ' d l  '{ i l  f r . m  l n
:  Q + [ ( P - Q )  ' d ] d

The Closest Point on a Line to a Point

Given a line, PoPt, and a point, P, we may find the closest point, Po , on Fffi to e.

t/o' -jo)_l!:j_o)1 
t", _,o;Pp  =  Po  *  

LH_  po  |  |  p  _  po  l J , -

The Intersect ion of Two Planes

Two non-parallel planes iutersect in a line (Figure 4.3). Consider two such planes defined

by t i re point-and-vector pairs (Pr, i i r )  and (P2,d2) respect ively.  We can uniquely specify
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f).r X flz

Figure 4.3: Interscct ion of Two Planes

the intcrsect ion l ine by exhibi t ing both i ts di lect ion and a point on the l ine. These can be

dctelmined by the fol iowing pfocess:

o Determine the direction vector for tl-re line of intersection. This vector is clearlv

fr,1 x ii2.

o Let a- be the projection of d1 onto the plane defined by Pz and d2.

o Let R be the projection of P2 onto the plane defined by Pr and d1 in the direction d.

Then the line is specified by the pair (R, ii l x ii2).

The  In te rsec t i on  o f  Th ree  P lanes

The intersect ion of  three p lanes is  a point  p lov ided:

4 7



o No two of the three are parallel

o There does not exist a fourth plane to which all three are perpendicular

I f  we consider three planes, (Pr,dr),  (Pz,frz),  and (p3,d3),  then the calculat ion of the
intersection point proceeds as follows:

o By the above procedure find the equation of a line that is the intersection of the planes
(P1, ri1) and (P2, ii2). Let Q be a point on this line and ri be the vector direction of
the  i ine .

r  Project the point Q along the direct ion u-onto the plane (Pe,ds).  The result ing point
is the point of  intersect ion of the three planes.

4 . 1 . 2  S u b s c r i p t s

Given a cube, rvc rvill plesent a method to obtain piecewise planar approximations of the
inscr ibcd spl tere and, in the l imit ,  the sphere i tsel f .  We wi l l  consider this cube and the
objects obtained frorn it to be control polyheclra for the sphere. When considering a vertex,
Pf , of tlic control polyhedron, it will be helpful to be able to refer to the features in its
vic ini ty.  we rvi l l  refer to the edges incident to the vertex as ef, ;  for j  -  0,  1, . . . ,  n -  1 where
n  i s t h e v a l e u c e o f  t h e v e r t e x . 2  T h e v e r t e x a t t h e o t h e r e n d o f e d g e e f , r i s e f , r .  I f  w e p i c k a n
edge and label it ef,o, then the next edge counter-clockrvise around. the vertex is ef,r, then
ef,2, etc. Each pair of consecutive edges emanating from a vertex define a plane. Given two
edges, ef,, and uf ,j+r, rve rvill Iabel the plane defined by them pj;*2. It will be useful to
consider a plane to be a point-vector pair. Given a plane, p!,r, it will have a point, cf,;,
and a normal vector, df'r. when an edge, "1,r, is replaced by a new Type E face, this face
rvill l ie in the llane 2frt1. Using Doo's method, a Type V face that replaces pf [es in the
plane labeled P!,11 where j is the valence of pf .

4 . 1 . 3  G e o r n e t r y  o f  S p h e r e s

It rvill bc useful to consider relationships betrveen spheres, circles, and various lines and
points. \\/e give the follorving definitions.

2The subscr ip t  j  i s  a lways  modu lo  n
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Penci l  of  Planes

Consider a line, L, in JR3 along with the set of all planes in which L lies. We will call this

set of planes the pencil of planes of the [ne L.

Comrron Perpendicular

In lR3, consider a line, L, and trvo points, Pe and P1, such that neither point lies on

L. There are trvo points that lie on L that are the closest points on L to Ps and P1

respectively. When these closest points coincide rve will consider this to be one point and

call it the common perpendicular to Ps and P1 on L.

Normal Vector of a Sphere

Consider a poiut,  C, on the surface of a sphele along rvi th the normal vector to the sphere

at C. r7. Vector r7 is
(c  -  P" )

rvhere P" is the center of the sphere.

then we may say

l ( c  - P . )  |
If the sphere is a unit sphere centered on the origin,

d = ( c )

We note that d will l ie in any plane that CP. does.

Great Circle

If rve intersect a sphere with a plane, P, that passes through the center of the sphere, P",

rve obtain a great circle. This is a circle that lies in P and has the same radius and center

as the sphere. Consequently, every point on the circle l.ies on the sphere. Consider a point,

C, on this great circ le,  and the normal vector to the sphere, d,  at  this point.  Since CP.

lies in P, d does also. Consequently, d is normal to the great circle at C. Consider the

diameter on rvhich C lies. Every great circle formed by a plane from the pencil of planes

for this diarneter will pass through C and the point on the surface of the sphere opposite

to C. Conversely, every great circle passing through a point on the surface of the sphere

lies in a plane from tire pencil of planes of the diameter to that point.

^,)



Angular Measurements

Consider a circle along rvith three points on the circle, Co, Cr, and C2. By the definition

of a radian, we may say that if the arc distance from Ce to C1, 
li&tl, is "quut to the arc

distance 
lirerl , tnun the angle betrveen the radius to Ce and the radius to C1 is equal

to the angle betrveen the radius to C1 and the radius to C2. We will call the arc distance

betrveeu trvo points on the circle tire distance betrveen them. Additionally, we may say

le ;e l= le ;q l
The line segment Coq is called the chord from ce to c1 and the distance 

le;O I it

called the chord distance to differentiate it from arc distance.

Spher ica l  Coord ina te  Sys tem

It rvili be useful to establisir a coorclinate s1'stcrn for a sphere similar to that used on the

Ealth. There rvi l l  bc two diametl ical ly opposcd points ca"l led poles. The diameter to these

poles will be called the cris and the great circle perpendicular to the axis will be called the

ecluator. We may fully define a coordinate systern by specifying a point on the surface of

the sphere to be a pole, or by specifying a gleat circle to be the equator. Circles formed by

the intersection of the sphere with planes parallel to the plane of the equator will be called

latitude /ines. Excluding the equator, latitude lines are not great circles. We may measure

a lat i tude l ine's distance from the equator or f rom one of the poles. Consider a point,  C,

on tlte surface of the sphere from rvhich segnrents of trvo great circles, 6p and Q, emanate.

If we set C as the pole we may determine the points, Cs and C1, at which 6 and ff will

intersect the equator. We will call the arc distance betrveen Cs and C1 the hour angle

between $ and ff and designate it lh(C). This is the same angle we would find between

the normal vectors of the planes in which $ and 6 lie.

Spherical  t iangles

\\1e may define a spherical triangle by thlee points, Co, Cr, and C2, on the surface of a

sphere .  such tha t

l .  Vectors (C; -  P"),  i :  0,1,2 are l inearly independent.  This impl ies that no pair  is

diametr ical ly opposed and they do not coincide.
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2 . 0 < l n ( c ; ) < r

A spherical triangle has edges, c;bl, i?r,and i!Bs, that are arcs of great circles. we
rvill let "t = 

f c,*]b,*rf , rhu., is, c; is the length of the side opposite c;. since the lengths
of these edges are angles, spherical triangles have six angular components: three arc angles
and three hour angles. For any of these spherical triangles we may say the following

( 4 . 1 )

(4 .2 )

we rvill be interested in spherical triangles wliere ln(c;) S f. To prove this true, we can
shorv that cosl6(C;) 2 0. Consider equat ion 4.2. First  we wi l l  look at the denominator,
sin(c; . '1)sin(c;a2).  Frorn requirenrent 2 rve rnay say 0 (  c;1. r .  Therefore, we may say
0 < sin (" ;)  < 1 and conclude that thc denorninator is posi t ive. Considering the numerator.
we may conclude

cos  ( c ; )  )  cos  ( c ;11 )  cos  ( c ;12 )  <+  cos  l n  (C ; )  >  O (4 .3 )

Geodesic Arcs

Considel trvo differing points on the surface of a sphere, Cs and C1. The shortest arc
betrveett these points is called the geodesic. Suppose that Cs and C1 are diametrically
opposed. f'hen tltere ale infinitely many arcs of the same length between them. We may
find one of these geoclesics, i&r, by choosiug a plane from the pencil of planes of the
diarletel from Cs to C1. Intersect this planc rvith the sphere and choose one of it halves
to be the geodesic. otherwise, dcfine a plane, p., using points co, cr, and the center of
the sphere. Then intersect P" rvith the sphere. The resulting great circle passes through
C6 and C1 and is divided into trvo parts by them. The smaller of these two parts is the
geodesic from Cs to C1. As noted in the definition Great Circles, the vectors normal to
the sphere at points cs and c1 lie in p" and are normal to this great circle.

Pro jec t ing  a  Po in t  on to  a  Sphere

We may def ine a l ine, P"R, where p"

I f  rve intersect F"R with the sphere

n  1  t n ( C o )  +  t 6 ( C 1 )  *  t p ( C 2 )

cos la (c;)  = 
cos (c;)  -- [cos (c;+r) cos (ci+z)]

sin (c; . , .1) s i"  (q+z)-

is the center of a sphere and R is some different point.
rve rvill obtain a point of intersection R. We will say
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that R is the projection of R onto the sphere.

to  R.

We note that every point on Fp projects

Figure 4.4: Line Projected onto Sphere

Project ing a Line onto a Sphere

We may define a line, L, and a sphere sucl'r that L does not pass through the center of the
sphere, P"' Using L and P", we may define a plane, P". If we intersect p" with the sphere,
we will obtain a great circle, i. \Vu will say that i is the projection of L onto the sphere.
\\/e note that any line in the plane 2" rvill project to i. Consider a segment of L, e, with
end points Ps and P1, neither at inf ini ty (Figure 4.4). I fwe project points ps and p1 onto
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the sphere, we will obtain projected points Ps and P1. The two projected points will l ie

on i and divide it into two arcs. We will call the minor arc the projection of e onto the

sphere and label it 6. From the definition Projecting a Point onto a Sphere we note

that a line from any point on the line P6P" to any point on the line F;4 wiil project to

6. Projected line 6 is the geodesic from Ps to P1 on the surface of the sphere. Since the

geodesic lies in the plane P" and, is an arc of i, its length is the arc distance from Ps to P1

measured along i .

4.2 Doo's Algori t lun cannot be Extended to Create Spheres

We were successful in our attempt to modify Chaikin's algorithm so that it could generate

rational curves. Ilowever, we will show that it is impossible to directly extend Doo's algo-

r i thnr so that i t  rv i l l  produce a sphere whcn appl icd to a cube. Considcr a cube with side

lcngth 2 and velt ices (+1,*1,*1).  Each of the cube's faces Lies in a plane tangent to the

inscl ibed unit  sphere centered on the or igin.  As the cube is ref ined, we would l ike al l  new

fa"ces to coritinue to be tangent to the unit spltere. First we will need to choose a ratio so

that the resulting Type E faces are tangent to the unit sphere. Because of the symmetry

of the cube, a level k = 1 Type E face is parallel to the edge it replaces and has an alpha

angle of f to the faces adjacent to this edge. With an appropriate ratio, the new Type E

faces rvi l l  be tangent to the unit  sphele at their  centroids. Given this,  we may def ine the

plancs in rvhich the new Type E faces l ie.

|or instance, consider vert ices (Figure 4.7)

Ps

Po,o

( 1 , 1 , 1 )

( - 1 , 1 , 1 )

( 1 ,  - 1 , 1 )

( 1 , 1 ,  - 1 )

Po, r  :

Po ,z  =

Point Po has thlee adjacent faces ivit it centroids

Co,o

Co, r

Co,z

( 1 , 0 , 0 )

( 0 ,  1 ,  0 )

( 0 , 0 ,  1 )

1 a



Co, '

Figule 4.5: Vertex P6 of the Cube

these faces have normal vectors

n-o ,o  =  (1 ,0 ,0 )

d o , r  =  ( 0 , 1 , 0 )

, io,z : (0, 0, 1)

and they l ie in planestangent to the unit  sphcre

Po,o = (Co,o, do,o)

Po l  =  (Co. r ,  n -o , r  )

Po2 =  (C6,2 ,  r ie ,2 )
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at

o f

the intersection
four faces

Normal  vec tor

from center

o f  the  Type B face .

The center  i s  a t  a

d i s t a n c e  o f  o n e

f rom the  0r ig in

Figure 4.6: Type E Irace Tangent to the Unit Sphere

Each edge will be replaced by a Typc E face that lies in a plane that is tangent to the

unit sphere such that the centroid of these nerv faces will touch the sphere (Figure 4.6). For

example, edge P6Ps,s will be replaccd by unit sphere at its centroid

7r lv 0 , 0  -

and i t  wi l l  l ie in a plane with normal

?to,o =

Tliis gives the plane

pt,o = (c3.,d},r)

Similar ly the other two edges adjacent to P6, PePsJ and

l ie in planes

vect

a face tangent to the

( J' ',/t\
I u '  , '  ,  I
\  "  " /

o l

l " r t f \\  u . - . -  ,
\  2 ' 2 1

(ci,,, ';1,,)n l
t-o,7 =

4 9

PoPo,z are replaced by faces that



rvhere

117r n t

1 : lv n l

6 r l"o ,2

are the centroids of the faces and

, . n  1

I L N  )

are the normal vectors of t i ie planes.

Using Doo's mcthod, cach valence-threc vertex of the cube is replaced by three new

points. Tl"rese new points lie itt the planes of the faces adjacent to the vertex and are a

combination of the veltex and the centroid of the face using an appropriate rveight 16. For

P6 thcse three ncrv face points arc

p d , o  :  ( 1 - r o ) p o * t o C o , o

P J , ,  :  ( 1 - r o ) P 6 f l e C s , 1

P6, ,  =  (1  -  to )  Po *  toCo,z

Additionally, these new points lie at the intersection of four faces: one original face, two of

tlre nerv Type E faces, and a new Type V face. Using the method presented in section 4.1J,

we may calculate the point of  iutersect ion using any three of these planes (Figure 4.7).  For

instance, P[,0 is at the intersection of planes Po,o, Ptp and P[,2. Using this to calculate

Pf,6, rve may discover tl-re appropriate rveight to use. First, we will calculate the line of

intersect ion, LA,,  (Q,d),  betrveen Pop and 2j ,1.  L| , ,  is def ined by a point,  Q, that l ies on

the line and a direction vector, 'u*. The direction vector, d, is simply the cross product of

t l re normal vectors ol  Pop and Pj.1

f 1' l )  =  7 ] 6 , 9 X n 0 , 1

(ca,r,da,r)

(+,,,+)
(+,+,,)
l,/2 ^ ,/2\
\  . r ' v t  c  I
\ "  "  I

lr/, rt ^\
\  o '  , ' u )

( 1 . 0 , 0 )  "  ( 9 . 0 . 4 \
\ r , v , u / ^ \  

Z  
r " r ,  

/

( 0 , * , 0 )
\ - t
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Po,o

Figure 4.7: Cube after First

A point,  Q, on this l ine may be def ined by

any vector that lies in Po,o. We may find

onto Pe,s

_) Po,

Refinement Using Rational Doo's

projecting a point on Po,o, Cs,s, onto Pj,, using

a vector, o], that lies in Po,o by projecting fr'].,

''l_
Po,,

dA,, - (t6,, .  ds,s) Ae,e

(+,',+) ((+,0,+) (1,o,o))
(+,' '*) (+) (1,0,0)

(1,  o,  o)

X
/F6,,

X
Fto,,

X

F o,o



f \
, l

l r t ^ r t \  / 6  \=  ( ; 'o , t ; ) -  ( f  ' o '02
L f i \

=  (  0 ' 0 ' ;  )
\  - /

ject C6,6 onto P61,1 along t[

co.o * 
(cJ'' - 

c:'o) ';6'' 
r-

u p  ' n 6 , r

( (+ ,0 ,+ )  -  (1 ,0 ,0 ) )  ( f , 0 , * )  I( 1 , 0 , 0 )  +  (  0 , 0 ,(o,o, f )  (+,0,*)  \ " ' " '
/;

1 _  v .  |  , / a \

( 1 , 0 , 0 ) + + ( 0 , 0 , # )
t  \  o l

( 1 , 0 , 0 )  +  ( 0 ,  o ,  t n  -  t )

( r ,0, . , ,4 -  r )

Pj, ' ,  and Pl,rby

; \
t , o  

)

rve rvill pro

a =

=

=

Then

,  I  ^ / t  \ \
- t l  1 n  " -  n \ l- , /  r  \  

" r  
t  ) "  I  I

\  '  t /
e intersection of plan

't)

^ / :
U ,  ! ' 2

i s  th

'  11o ,2

"6,, = ((,,
po in t ,  P [ ,0 ,  tha t

to P],2 aiong u-

( ca ,  -  q )
a + u-dl,

( t ,o, r /z  -  r )  *

'0 ,0

t - 1
\/,
2

.r,

0 ,
* , * , 0(

q
1 t )
/;

v z

. 5 _

7E
\ 2

0 ,
i-

)

l
0

-  ( t

E
2 ),

o)
/
( 0

/ l r t  r t
\ l - i r - o  r

rvh ich g ives

Now, rve may find the

project ing point Q on

Pd,o =

"4 ^\
. U  )

o)

= ( t ,o , r / l -  , )  *  #  (0 ,
t \

= ( r ,o ,Jz  -  r )  *  (o ,J i  -  r ,
:  ( r ,J ,  -  t , t fz  -  t )

\\/e may now solve for t l ie weight, 16, used to obtain this point

p d , o  :  ( 1  - r o ) p 6 f t e C e , s

r. t



t ^

Using this value for 16we solve for P[, ,  and Pf, ,  gett ing

p 3 , ,  =  @ - t , t , r / z - t )
pA , ,  :  ( r t - r , r t - t , t )

I 'hese ale the veltices of the nerv Type V face that rcplaces vertex Ps. Calculating this

face's centroid rve get

/ - \
\ 1 , \ / 2 - 1 , \ / 2 - l )

( t , J i - r , J i - t )
( t , r t - t , ' / i - t )
( r , r t - 2 , r t - z )
(o , r -  Jz ,z -J i )

7r l

1 l

( i  -  t o )  ( 1 , 1 , 1 )  +  t o  ( 1 , 0 , 0 )

( 1 ,  1 , 1 )  -  l o  ( 1 ,  1 ,  1 )  +  r o  ( 1 , 0 , 0 )

( 1 , 1 , 1 )  +  r o  [ ( 1 , 0 , 0 )  -  ( 1 , 1 , 1 ) ]

l o  ( 0 ,  - i ,  - 1 )

l o  ( 0 , 1 , 1 )
^ r' 2 - V 2

o
J

( f r  + , D  -  1  f r .  +  ̂ 6  -  t  f r . r . / 5 -  r \
\  2  |  Y s  ' r  

2  |  v -  . r  
2  T V . - t )

( t 6 , 0 * e ] , , + e [ , r )

I {orvever,  the point does t . tot  l ie on the unit  sphere; i t  is p 1.0556 from the or igin

(F igure  4 .8 ) .  Us ing  the  rue thod descr ibed in  sec t ion  4 .1 .1 ,  we can show tha t  th is  i s  the

closest point to the origin ou the plane in rvhich this face lies. Of course, if a different
rveight were chosen so that this Type V face were on the unit sphere, the adjacent Type

E faces rvould be inside of the unit sphere. It appears, then, that there is no weighting

funct ion that can be used to obtain a sphere from a cube using Doo's method.

4.3 Generat ing a Sphere f rom a Cube

4 . 3 . L  G e n e r a l  I d e a

In trvo dimensions we started rvith a square where each of its edges was tangent to the
inscribed circle. The corner vertices rvere cut off and replaced with edge lines that were

also tangent to the circle. h-r three dimensions we start with a cube where each of its face
planes is tangent to t l "re inscr ibed sphere.



FA,,

Figure 4.8: Type V Face not on Sphere

We cut olT each edge line and replace it rvith a new face plane that is tangent to the

sphere and will refer to this as edge-beuelirzg. In this way, we iteratively produce polyhedra

that have a structure similar to the cube, that is, each face lies in a plane that is tangent

to the sphere, and each edge and vertex lies at the intersection of adjacent tangent planes.

Beginning rvi th the six-faced cube (Figule 4.9),  af ter one i terat ion the number of faces grows

to  e igh teen.

o+



Cube One re f inement

Edge  removed  by
cut t ing -  p lane
tangent  to  sphere

Figure 4.9: Results of First  Ref inement Step

Edge Rernoved by Cutting PlaneF igure  4 .10 :  Cube 's



Figure 4.11: Intersect ion of Three New Type E Faces
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\4Ie restrict the following discussion to the cube rvith vertices (+1,*1,;11) and its in-
scribed uuit sphere. Consider two adjacent faces of the cube, Ps and. Pt. These faces are
tangent to the sphere at points Cs and C1, respectively. The geodesic connecting these
points is an arc of the great circle at the intersection of the sphere and the plane deflned
by Co, C1, and the origin. To cut offthe edge betrveen these faces, we construct a plane,
P, parallel to this edge and tangent to the sphere at the midpoint of this geodesic (Fig-
ure 4.10). Using P as a cutting plane, we remove the edge, replacing it with a face that
lies in P. After rve have delined a cutting plane for each edge of the cube, all planes are
clipped against adjacent planes. The new faces have edges that lie in the lines ofintersection
between adjacent planes. (Figure 4.11).

Since our construction is symmetric, we need only consider an octant of the cube. We
l'il l describe its relinement in the follorving. The faces of the figures are tangent to the
sphere at the dots.

Figure 4.12: Level k :  1 Faces
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Fisure 4.13: Level A :  2 Faces
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Figure 4.14: Level k = 3 Faces
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Figure 4.15: Level k = 4 Faces
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4.3 .2  A  Tesse l la t ion  o f  the  Sphere

As introduced in section 4.3.1, we rvill present an algorithm that will iteratively produce
polyhedra that are piecewise planar approximations of an inscribed sphere. We will define
a set of tessellations of the surface of the sphere and show that there is a correspondence
betrveelr each of tliese polyhedra and one of these tessellations, such that, from one we mav
f ind the other.

Given one of these polyhedt'a, a vertex of the tessellation rvill be a projcction of a vertex
of this polyhedron and an edge of the tessellation will be the projection of an edge of this
polyhedron, tltus, each tile of the tessellation rvill correspond to a face of the polyhedron.
Consequently, the valence of a polyhedron's vertex is the same as the valence of the cor-
responding tessellatiort vertex. Each tile rvill contain the point at which the corresponding
face is tat tgent to the sphere; we rvi l l  cal l  th is point the data point.  Since we begin with
the cube, out '  tcssel lat ions rvi l l  never have feiver than six data points.  We wi l l  shorv that an
edge of a t i le rvi l l  bc an arc of a gleat c irc le such that every point on the arc is equidistant
from tlte data points in the tiles adjacent to the edge. we rvill call these arcs arcs of equal
inJluence' Since this arc is equidistant fi 'om adjacent data points, it intersects the geodesic
betrveen these datapoints at the geodesic 's midpoint,  and rve rvi l l  shorv that the hour anglcs
at this iutersectiott are f . Tlie verticcs of the tcsscllation rvill fall at the intersection of arcs
of equal influencc and be called points of equal influence. All points on the surface of the
spherc iv i t l r in a t i le wi l l  be close r to the data point of  that t i le than to any othcr data poi ' t .
Tl tus, rve rvi l l  cal l  the region rvi thin a t i le the region of inf iuence of that t i le,s data point.
To sumrnarize, our sct of tessellatious liave the follorving properties

1' Each projected edge and projected vertex is equidistant from the data points adjacent
t o  i t .

Any point on t l ie surface of the sphere that l ies within one of the t i les is closer to the
data point of  t i rat  t i le than i t  is to any of the other data points.

Tl te intersecl iot t  of  a geodesic betrveen adjacent data points rvi th the tessel lat ion edge
scparat ing these da"ta points fal ls at  the midpoint of  the geodesic and intersects at
hour angles of f  .

t

. ) .
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Given the Polyhedron, find the Tessellation

Figure 4.16: Intersect ion of Trvo Tangcnt Planes

Although rve will only deal with tessellations that contain six or more data points, *,e

rvill describe them beginning with ferver data points. First, rve will show that the iine of
intersect ion between two planes tangent to a. sphere is equidistant f rom the tangent points

of tl 'rese planes. Consider two differing and non-diametrically-opposed points, Cs and C1,

on the surface ofa sphere and the planes tangent at these points,  Pe and P1 (Figure 4.16).

As dcscr ibed in The Intersect ion of Two Planes of sect ion 4.1.1, these planes wi l l

intersect at a line that we rvill label L. Norv add the plane, P", defined by points Co, Cr,

and the center of the sphere, P".  These three planes, Po, P1, and p",  wi l l  intersect at  a
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tt,,C 
rrr,

J
I
I
l
t,,
1
l
l i r

Figure  4 .17 :  Cross-scc t ion  o f  the  Sphere

point that rve rvill label Po. If rve intcrsect P, with each of the following: ps, p1, and
the spltere, rve will have the lR2 figure 4.17. Using some basic trigonometry, we see that
point Po, on t l te l ine of intersect ion, L,  is equidistant f rom points Cs and C'.  Referr ing
again to The Intersect ion of Two Planes in sect ion 4.1.1, rve know that the direct ion
of L is deter lnir led by the cross procluct of  the norrnals at Cs and C1. As noted in the
def ini t ion Great circ les f i 'om sect ion 4.1.3 these normals l ie in the plane p".  Therefore,
L is perpendicular to P. and point Po is the comnon perpendicular on L to Cs and C1.
Norv' cottsider some other point on L, P". \\/e may construct two triangles designated by
thei l '  vert ices'  {P",  Po, Co} and {P",  Po, Cr}.  We knorv that these are r ight t r iangles since
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L is perpendicular to both CoPp and eE Therefore, since

CoPp C r P p

we may say

e;P; C r P ,

c l .So, every point  or t  L  is  equid is tant from Cs and

Figure 4.18: Plane of Equidistance

No'rv we will define a plane, P1, that rve rvill shorv is equidistant from data points Cs

and C1. The plane P1 is def ined by the l ine of intersect ion, L,  and the center of the

splrere, P. (Figure 4.18).  Since L is perpendicular to P",Pt is also. The l ine of intersect ion
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betrveen P" and Pr is F"Po. Let I (Co, P", C1) be the angle between the radii P"rS and

P"Cr. I f  we consider the l ine P"P, in Figure 4.1.7rwe see that i t  b isects l (CorP",Cr).

Consequently, the intersection of P& rvith CoCr, C-, is the midpoint of CeQ, and F$

is perpendicular to Cgq. Therefore, Po is the closest point on L to C-, and effi is

perpendicular to L.

Since C- is the common perpendicular to Co and C1 on P"-P;, it is the common

perpendicular to these on the plane Pr.  Norv consider some other point on Pt,Pr.  Again

we may form trvo r ight t r iangles, {P",  C,r. ,  Co} and {Pr,  C-,  Cr},  and show that any point

on the plane P1 is equidistant from points Cs and C1 . Thus P1 separates 1?3 into two parts,

one in whiclt every point is closer to C6 than to C1 and one in which every point is closer

to  C1 than to  C6.

in the plane of equidistance, Pt, we may find the great circle that is equidistant from

data points C6 and C1. Filst, rve project L onto the sphere and obtain fl. Sitt.u i l ies in

tlre plane Pt, every point on i is equidistant from points Cs and C1. Consequently, any

point on the sphere betrveen i and C6 is closer to Cs than to C1. Thus, i separates the

sphere into trvo tiles, one containing C6 and all points on the sphere closer to it than to

C1 and one containing C1 and all points closer to it than to Co. Consider the geodesic

from C6 to C1, i&r.  Since the midpoint of  i i t1,  C112, is equidistant f rom Cs and C1,

i t  nrust l ie in the plane of equidistance, 21. Since Cr/z is on the surface of the sphere, i t

rnust lie ot't i. Thntefore, C172 lics at tlte intersection of i and i&t. Suppose we establish

a coordinate system rvhere C112 is a pole and pass a lat i tude l ine, l ,  through Cs and C1.

Consider the intersection points of i and I that rve will label Co and C6. Since every point

o.t i ir equidistant from points Cs and C1, w€ may say

t ^  |  |  ̂  |

l C " C ^ l  =  l C ' C ^ l
l " * t t ^ * l
t ^ l t ^ l

lcoc, l  = lc ,col
Additionally, since very point on I is equidistant from C172 we may say

l";;c.l = 1.,7", | = l"G""l = 1.fr",1
Therefore, rve may say

l"lb.l = li3.l = li&,| = liF,l
oc



and conclude that the hour angles at the intersection of i and iftr arc $. Therefore,

rve have a trivial tessellation that meets the three requirements above, although clearly we

cannot find an equivalent polyhedron that will enclose the sphere.

To produce a more complex tessellation, let us consider three points, Cj,o, C;,1 , and C;,2,

on the surface of a sphere that satisfy the requirements for spherical triangles as defined in

sect ion 4.1.3. Planes tangent at these points areP;,s,2;,1,  and P;,2. We wi l l  label the l ines

of intersection betrveen these olanes

L ; , j : P ; , j + r f i P ; , j + z

These three planes will intersect at the point P;. Since every point on the line of intersection,

L;, ; ,  is equidistant f rom points C;, j+t  and C;,112, we may say that P; is equidistant f rom

points C;,0, Ci,r ,  and C;,2. We may project the l ines of intersect ion onto the sphere and

obtain great circ ler i ] ,  f , l ,  and f) .  Considcr the project ion of P;,  P;.  Since P; l ies on

L;,r, it rvill ploject onto f]. So rve may say that P; lies at an intersection of fl;, t;,

and frl. Since these great circles intersect at P; they belong to the pencil of planes of the

diameter through P,, F,E. Recall that projccted line fI ir equidistant from points C;,j+r

and C;, i12. I lowever,  f I  i t  equidistant f rom C;, i ,  C;, j+r,  and C;,112 only at projected point

P; ancl the point diametrically opposed to P;. Any other point on f ir either closer to or

fartirer from C;,i than it is to C;,;a1 or C;,.q2. We rvill define a segment of fl;:, 6[, such

tliat any point on 4;- ir not closer to C;,; than it is to either C;,j+r or C;,1",-2. Segments

6.1,6;,  and {)  separate the sphere into three t i les such that any point within the t i le

contaiuing data point C;, i  is c loser to i t  than i t  is to ei ther of the oth,er two data points.

The valence-three vertices of this tessellation, P; and the point diametrically opposed to

it, are cquidistant from data points C;,0, C;,r, and C;,2. Again, we have a tessellation

tltat meets the three requirements above, but stii l rve cannot find an equivalent polyhedron.

Without considering the minimum nurnber of data points needed to produce an enclosing

polyhedron, we note that the six that coincide with the faces of a cube are sufficient.

Given the Tessel lat ion f ind the Polyhedron

Suppose rve have an edge, G, from a tessellation that corresponds to an enclosing polyhedron.

Addit ional ly,  rve have the end points of 6,  P6 and P1, along with the adjacent data points,

C s a n d C l , a n d t h e c e n t e r o f  t h e s p h e r e , P . .  A s n o t e d i n t h e d e f i n i t i o n P r o j e c t i n g a L i n e
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onto a Sphere in sect ion 4.1.3, a l . ine from any point on PsP" to any point on P1P" wi l l

project to 6. However, given tangent points Cs and C1, we may recover the unique points,

Ps and P1, and the line segment, e, that lie at the intersection of the planes tangent to the

sphere at Cs and C1. First define a plane, Pe

Po = (Co, fro)

-  (co)n : 
IE;tl

Next,  def ine t lo t 'ectors,

Point  Ps is  the pro ject ion of  P6 onto 2s a long o-6,

d1 and e is  the l ine segment  betrvecn Ps,  and P1.

the projection of P1 onto Ps along

Lat i tude Lines and Spherical  Tl iangles

It ivill be useful to consider tn'o relationships between a valence-three tessellation vertex,

P ; ,  and i t s  ad jacent  da ta  po in ts ,  0 , ,0 ,  0 , , r ,  and e ; ,2 .

l .  Lat i tude Line of a l .essel lat ion Vertex

As rve have shorvrr

l"o'.l = lp,?',,1= l"G,,l
Establ ishing a coordinate system rvi th P; as a pole, the intersect ion of the sphere

rvith the plane defined by C;,0, Ci,r, and C;,2 is a latitude line, l;. We will call l, the

lat i tude l ineol P;.  Every point on l ;  is equidistant f rom F;.  We wi l l  say that apoint

on the surface of the sphere that lies in the region between P; and l; is fnside of l;,

n ' l r i le points in the other region of the sphere are outside of l ;  (Figure 4.19).  Consider

the axis to P;. The point diametrically opposed to P; is also equidistant from every

point on l;. \4/e note that this axis is normal to the plane in which l; l ies and intersects

the circ le def ined by l ;  at  i ts center.

Suppose rve had only points C,,0, C,,r ,  and C;,2. We could f ind P; and the point

diametr ical ly opposed to i t  as fol lows. l ' i rst ,  intersect the plane def ined by Ci,o,  Ci.r ,

P . \

P" )

P1 is

6 s  =  ( P . -

f i  =  ( P ' -
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c i , i

Figure 4.19: Projected Point rv i th Projected Lines

and C;,2 with the sphere to obtain l ; .  Next,  f ind the l ine that is normal to this plane

and passes through tire center of l;. Norv, intersect this line with the sphere and obtain

P; and the point diametr ical ly opposed to i t .

2. Spherical Triangle of a Tcssellation Vertex

We will call the spherical tliangle formed by C;,0, C;,1, and C;,2 the triangle of the

tessellation vertex P; ancl Iabel it A;. Given a tessellation vertex, P;, and its triangle,

A;, rve may cla.ssify them by the location of P;. If P; Les strictly within A;, we will

call both this tessellation vertex and its triangle Type I for inside. If P; Ues outside

of A; or falls on an edge of A;, rve rvill call these Type O for outside.
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Lat i tude Line

Considering the

follorving

of a Tessellation Vertex

latitude line, l;, of a valence-three tessellation vertex, P;, *e will show the

1. There is no data point rv i thin l ; .

2.  There are exact iy thrce data points on l ; .

3.  No data point outside of l ;  a lTects P;.

\4/e rvill consider the tessellation of the sphere in the vicinity of P; and horv this tessel-

lation rvould be affected if we were to insert another data point, C, on the surface of the

sphere di f fer ing from C;,s,  C;,1, aud C;,2.

I f  C rvere to be inside of l ; ,  thc'n P; rvoukl be closcr to C than to C,,s,  C,,1, or C;,2 and

str ict ly rv i thin C's region of i t t f luencc. As r i 'e havc shorvn, there could not be a tessel lat ion

vertex at P; because i t  tnust be ccluicl istant f lom the adjacent data points,  at  a point of

cqual inf luence.

Suppose c were to l ie on l ;  bctrvecn c;, ,  aud co,r*r .  Clcar ly,  c would be closcr to the

arc of equal influence between C;,; and C;,;11 than tirey, and this arc could no longer be

part of the tessellation. This arc of equal influcuce rvould be replaced by trvo new ones, one

betrveen C and C;,, and one betrvcen C aud C;,j+t. \Ve rvill sliow that these two nerv arcs

pass through P;,  thelefore incrcasing i ts valence by one.

Suppose C and C;,1 are opltosi te frorn oue another on l ; .  Then the geodesic ie, j

rvould pass throt igh P;.  Since C :rud C;,1 ale on l ; ,  P; rvoulcl  be at the midpoint of  CQ,;.

Therefore, the arc of equal influeuce betrveeu C and C;,; would pass through P;. In the case

rvhere iei , j  does not pass througl i  P;,  rve n, i l l  considcr the spherical  t r iangl" {P;,9.Cr, ; i .
S,l:11 C and C;,i l ie on l;, we may say that this triangle is isosceles since for sides P;C and

P;C, , ;
l : ^ l  l " ^  |

lP,cl  = 
lP,c,, , l

As slrorvn, the arc of equal influence betrvecn these points intcrsects iei,j at an hour angle

of f  .  Therefore, this arc of equal in l luencc passes t i r rough P; (Figure 4.20).

Likervise, the arc of equal inf luence betrvcen C and C;, j+r must pass through P, also.

Therefore, there are now trvo at 'cs of equal inf luence passing through P; that have replaced
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ci , j
O l d  e d g e  ( d a s h e d  l i n e )
rep laced by  two
ne lv  edges

Figure 4.20: Data Point C on Lat i tude Line l ;

one of the or iginals,  incleasing the valence by one. We may conclude, then,

to l ie on l ; ,  P; cau no longcr be valeuce t i rree.

Final ly,  suppose C welc outside of l ; .  Then, C rvould be too far f rom

inf luence on i t  s ince a vertex of the tessel lat ion is equidistant f rom adjacent

Spherical  Tl iangle of a Tessel lat ion Vertex

that if C were

P; to have an

data points.

Now, consider the spherica"l triangle of a valence-three tessellation vertex, P;. We will show

that if all hour angles of A; are less than or equal to f , we may conclude that P; and A;

are Type I.

For tesscl lat ion vertex P; \ve u' i l l  lequire that points C;,0, C;,r ,  and C;,2 l ie within

the same hemisphere ut Pi .  As shori 'u,  the tesscl lat ion edges emanating from P; intersect

geodesic sides of A; at  the midpoints of these sides. Horvever,  in general ,  we cannot ensure

that P; is Type I ,  that is,  i t  l ics rvi t l i in A; ( l i igure 4.2I) .
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C' .0

Figure 4.21: Vertex not within the Spherical  Tr iangle

To guarantee that P; will be Type I, rve rnust sct certain restrictions on the shape of

As slrown in Figure 4.22, consider an edge of A;,  geodesic C;, f i , ia2, that is
, . 4a projected l ine, L.  The tessel lat ion edge cquidistant between C;, i  and C;, j+,

of projected line t,it, and the intersection of L,-r]-r with C;,fr,j+z is the
c . F .  - r ' 1  \  ^
vtrvNr+. ' )  - i , j+r.  /y 'e know that P; must l ie on L;, i11 and that

l ^ l l  l l  I

l P ; C ;  ; l  =  l P ; C t  ; r r  |  =  l P r C r  r - ' l
l  " ,  l  l  

. ' J ' r l  
l  

. , t ' - l

To meet this requirement and ensure that P; lies within A;, we must restrict the region in

rvlriclr C;,j+t may lie. We may say that C;,j+, does not lie on i. If it were to lie on i, the

point equidistant f rorn C;,1, C,, j+r,  and C;, i12 would be one of the poles def ined by making

i ttt" equator, and rve have defined these points to be rvithin the same hemisphere as P;.

To further define the permissible region, rve rvill establish a coordinate system with C|,;*,

a scgment of

is a segment

midpoint of
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Figure 4.22: One trdge of the Spherical Triangle

as a pole and create a lat i tude l iue, l ,  through C;, i  and C;, j+2. Consider the posit ion of

C;, j+r.  I f  i t  were to l ie on I  then Crt, i* t  rvould be equidistant f rom C;, i ,  C;, i+r,  and C;,112,

so P; would coincide with C],;*r. We note that rvhen P; and Crt,i+, coincide, I and l; also

coincide. Now suppose C;,111 rvere to lie within l. It would have to lie on an arc from

C],;*t to some point, C, that lies on l. As rve have noted, if C;,;11 lies on l, then I and l;

coincide. I{owever,  as the posit ion of C;,r11 is moved tolvard C}, j*r  along CC;1,111, I  and

l; will no longer coincide. Latitude line l; rvill ti lt so that less of it l ies on the same side

of i  as C;, j+r and rnore of i t  l ies on the side of i  opposite C;, j+r.  As noted in Lat i tude

Lines and Spherical  t iangles, the diameter l ine through P; is normal to the plane of l ;

and passes through its center. Therefore. we may conclude that as C,,j+t is moved toward
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cl,o*, from c, P; is moved away from crr,;*, into the area on the opposite side of i from

C;, j+t ,  outside of A;.  In ei ther case, A; would be Type O.

Therefore' C;,j+r must lie outside of I for A; to be Type I. Thus, if we have a valence

three projected vertex such that each adjacent data point,  C;, i ,  j  = 0,1,2, meets this
requirement,  then we may conclude that A; is Type I .

C i , j
--r-
/  A \

-- \ c,',:*,

\ B \
\ \

- _ - \ - -

1

C,, j * ,

Figure 4.23: Ci, i11 on I

We rvill be interested in a subset of all Type I triangles, those that have hour angles that
are not greater than {, which rve will cafl acute triangles. To show that acute triangles are
Type I, we rvill establish a coordiuate system with the midpoint of the geodesic C;,n,j+2,

Cl, i*r ,  as a pole and create a iat i tude l ine, l ,  through C;, ;  and C;, j+z (Figure 4.22).  We
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must show that C;,i11 does not lie on or rvithin I to show that A; is Type I. Suppose C;,i+r
were to lie on I (Figure 4.23). Then rve may say

l"o,rQ;*' j = lc',,*tl,r*'l = l",,rJEir*,1
This makes tr iangles 

{a,,r ,  C,t , r*r ,  C,, ;*r}

Therefore, for these isosceles triangles, rve
{"r,,*r,Cl;*r, c,,;*r} isosceles tr iangles.

say hour angles

A

B

and

may

=A

B

Addit ional iy,  s ince A; is a sphel ical  t r iangle, we may say

A + e + A + B > z r

clearly, A + g must be greatcr than f if c;,;11 is to lie on l. suppose c;,111 were to lie
rvi thin L I t  rnust l ie on an arc from c],r* ,  to a point,  c,  that [es on l .  I f  c; , ;11 coincides
with C, we have seen that i ts hour angle is greater than zr.  As the posit ion of C;, ;11 is
moved along this arc torvard crt,r*r, the hour angles at c;,i and c;,;_,.2 decrease. These
hour angles approach zero as c,,j+r approaches crt,;*r. since the sum of the three hour
attgles must be greater than zr, the hour angle at C;,j+t must increase. Therefore, given a
valence three projected vcrtex and its associatecl triangle, it is sufficient to shorv that all
hour angles are less than or equal to { to shorv they are Type I. We will define a subset of
tlie tessellations dcscribed above that rve rvill call acule tessellations. For each vertex of an
acute tessei lat ion we may say

1 Tl ie vertex is valence three.

2. The tr iangle of the vertex has hour angles less than or equal to

acute tr iaugle.
that is, it is an

3. Therefole, the vel tex and i ts tr iangle are Type I .

Acute Tessel lat iorrs

When rve have au acute tesseliation we can show that data points other than the three
adjacent to a tessellation vertex do not affect this vertex. Referring to Figure 4.24, consider

2 t
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Figure 4.24: l ;  and I

horv the posit ion of P; and l ;  c iepends on the l losi t ion of C;, i11. Let us assume that C;, ;11

l ies to the lef t  of  C;, f i1p. Keeping C;, j+r within the bounds establ ished for a Type I

projected vcrtex, we may place C;,i11 any place on l; (dotted portion) without affecting the

position of P;. Suppose we were to move C;,i+r farther to the left of Cl,i*, than the current

l;. Then P; would rnove to the left, arvayfrom C],r*, along Lfr1. Latitude l; would also

move, so that the sol id port ion rvould protrude less into the area to the r ight of  C;, f i , ia2.

Conversely, if rve move C1,i-,.1 closer to Cl,r*r, P; rvould also move closer to C;I,;*r, and l;

rvould shi f t  so that the sol id port ion rvould protrude more deeply into the area to the r ight

of C;, iQ,r12. Cont inuing to move C;, j+r tor i ,alc l  C1,. ,*r ,  i t  rvould eventual ly approach I  but

cannot reach i t  i f  th i .  ic rn r .orn, i ' .  '1" '^o I .  As C;,r11 C&rTr€ closer and closer tO l ,  l ;  rvOuld

l c



come closer and closer to coinciding with l.

portion of l; to the right of C;,fr,;12 would

However, since C;,r..ru1 can

ahvays fall within l.

never reach l. the

e  i + t , j + z

Figure 4.25: Neighboring Spherical  t iangle

Notv, consider tlte neighboring tessellation vertex to P; along the tessellation's projected
edge efi1, F,*, (Figure 4.25). We may assume P,11 is valence three since this is an acute
tessel lat ion. Data points adjacent to F;11 are the shared points c; , ;  and C;, j+z and the
non-shared point C;11, i+r.  We know that i f  C;11, i11 is to a{Iect p; ,  then C;11,1.. , r1 must
fall on or rvithin l;. Horvever, if A;.,1 is Type f, then C;+r,j+r must lie outside of l. So, we
rnay conclude that if lve have au acute tessellation and consider two neighboring tessellation
vert ices, the posit ior-r  of  the non-shared data point adjacent to one vertex does not affect
the other vertex. Flom t j r is we nay conclude that there is an edge of length greater than

/ t )



zero between the tessellation's projected vertices, and the valence of one of these projected

vertices is unaffected by the position of the non-shared data point of the other.

As shorvn above, we may find the unique line segment, ei,j+r, with endpoints P; and

P;11 that corresponds to the tessellation edge e[!1. We may then conclude that e;,;11 has

length greater than zero.

C'i
ci,, /
- ' f  -

ci<..

c,,,

Figure 4.26: Nerv Data Points

4 .3 .3  The Mathernat ics  o f  Edge-Beve l ing

As slated in sect ion 4.3.1, nerv polyhedra are produced by edge-bevel ing. Consider a vertex,

Pf , of a level A polyhedron that rve rvill assurne is valence three. It has three faces adjacent

to i t  t l rat  l ie in planes,Pf,s,Pf, ,  and Zfr.  Pluno P!, ,  is tangent to the sphere at point Cf, ; .

Edges emanating from Pf lie in the lines of intersection betrveen adjacent planes. Edge ef.;

- - - _ \
n I \

\ 
z__\;,9 \

\
a- \

a . \

- t ,
I/
I

A1,, I
l

4,..  I
\ l

\
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D r l'  t t l
\ I

C,tF

Figure 4.22: Nciv Tessel lat ion

rvill lie in line Lf', where

Edges " ! , i ,  i  =  0,1,2,  rv i l l
A + 1 planes are tangent to
to cfr*' ,c!,f i,,*r, j = o,

Triangle Subdivis ion

L! , ,  =P! ' , i * rnp! , i * ,

be repiaced by faces that lie in planes pljr. These
the inscribed sphere at thc midpoint of the geodesics
t t 3

new level

from Cf;

Norv, consider thc corresponding tessel lat ion to this polyhedron. When we edge_bevel thepoiyheclr .on by insert ing nerv tangent points at the midpoints .r  air .er*r , ; :  0,1,2, thecorresllouding tessellation rvill also ha'"'e thrce neiv data points that coincide with thesetangent points '  Tl tese new data points wi l l  l ie at the midpoints of the sides of t r iangle Af .when referring to the tessellation, tve rvill call the process of inserting new d.ata points atthe midpoints of existing triangle sides triangle subdiuision. we win break edsting triangles,Af into four smater rr iangles, af*t ,  ar,Jt ,  af i t ,  and Al l r ,  (see Figur ea.26)and producenerv tessel lat ions of t rre sphere rvi th projected vert ices, pf+t,plJ-r ,pl i r ,  
and pf l r ,  thatreplace Pf (see Figure 4'27)' If rve begin rvith the cube, appry the edge-beveling argorithm

lj",r":; :.:r^t"'::i:,i,,1: 
clrresl.onding tesseuarion, we generate the same tesseuation we
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subdivision & times. We will refer to the trianglet Af,'t as the

projected vertices of the tessellation, pf,lt, are the children of

tessellation. we would like to be able to state that the level k *

children of Af. Likewise,

ef . Gi""" a level ,t acute

1 tessellation is acute also.

Figure 4.28: Project ion of the Cube onto the Sphere

We bcgin with the cube whose faces are tangent to the inscribed sphere at their centroids

(Figure 4.28). Therefore, triangles of the tessellation that corresponds to the cube are

octants of the sphere. Clearly, as polyliedra ale produced by edge-beveling, we will never

have corresponding tessel lat ions rvi th tr iangles larger than an octant.  An octant tr iangle is

acute so we may say that i t  is Type I ,  and t l te tessel lat ion that corresponds to the cube

is ar-r acute tessellation. We rvill shorv that rvlteu the octants are repeatedly subdivided,
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the resulting tessellations are also acute tesseilations. From this we may conclude that the

corresponding polyhedra are valence three. To this end we will show that, the child triangles

obtained by applying triangle subdivision to an octant are acute.

Figule 4.29: Sirnpl i f ied Label ing

b

bz

Il irst, rve will

I Iere, upper case

n ' i th  the  oc tan t ,

a
Tr\

r'11

introduce a sirnplified iabeling for an octant of the

letters represent hour angles aud lorver case represent

we mav sav

sphere (Figure 4.29).

arc angles. Beginning

?T
:  =  A : B = C :,2

T T a b c

4 2 2 2
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Rearranging equation 4.2 we may solve for a/

, b c b c
c o s a  =  c o s ; c o s ;  f  s i n  ̂  s i n : c o s A

2  2  )  9 - - - -
1
I

:
2

f  =  a o r b ' =  c o s c '

Similarly

Solving for cos A/ wc gct

So rve rnay say

\\ 'c l ind cos Bs to bc

\Vhich leads to

cos a '  -  cos b 'cos c/  1cos A' =
; " f  b \ ' i r t C - : 5

r y  1 . 2 3 0 9 5 9  =  A ' =  B ' =  C '

cos 86 = 
cos B.- cos i cos a' - /5

sin i-rln ul 
: 

3

p . 9 5 5 3 1 7  =  B o =  C o - A r  =  C r = B z -  A z

After orte subdivision, all ltour angles are less than or equal to f; the triangles are acute.
Therefore, \\'e may conclude that the corrcsponding polyhedron is valence thrce and each
of the original vertices has been replaced by four new ones. That is, we started with the
eight vcrt ices of the cube and norv i rave tweuty_four.

Now consider a triangle' Af , chosen fi 'cim anong those obtained by applying triangle
subdivis ion to the octant and then to the result ing chi ldren for a total  of  & subdivis ions.
Labeling Af as above we may say

7f

t
0  <  c o s a , c o s b , c o s c < 1
z r  a b c
t
^ a b cu  <  cos  

t ,  
cos , ,  cos ;  <  1
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l\re will assume that Af is an tr iangle, that is,

A , B , C > 0

cos A, cos B, cos C < 1 (4 .4 )

and will show that the children of Af are acute by showing that the cosines of their hour

angles are non-negative. Using inequality 4.3 and the assumed inequality 4.4, we may say

the follorving

acute

7l

2 -
0 <

cos a

cos b

c o s c  Z

COS A,

cos b'

cos c'

For cos A rve may say the follorving

c o s A  =

c o s A  :

cos b cos c

cos a cos c

cos a cos b

b c
COS ;  COS ;' 2 2

a c
c o s  ;  C o s ;

z z
a b

cos - cos -
2 2

c o s a - c o s b c o s c

sin b sin c
cos a' - cos B cos i

(4 .5)

(4 .6 )

. i t  b . i r  9" ' - '  2  " " '  2

So rve may say

cos a' - cos B cos i
sin ! sin f

cos a' - cos B cos i
sin I sin i

cos a' - cos B cos i
sin I sin i

, b cc o s a  - c o s 5 c o s ,

, b cc o s a  - c o s t c o s t

c o s a - c o s b c o s c

s in b s in  c

(zcos2 ;  -  t )  -  (zcos2 B -  r )  (zcos2 ;  -  1)

(2cos2 i  -  t )  -  (acos2 |  cos2 |  -  2cos2 |  -  z .or2 !  +  r )
, h h4 c o s f s i n f c o s ! s i n !

(2cos2 * -  1) -  (  4 ros2 !  cor2 |  
-  2cos2 |  

-  zcos2 !  + t)' 2 , \

4 c o s f c o s !

_ 4 cos2 E cos2 i
4 c o s l c o s !4 cos ;j cos i
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- - _ , t  _ - - b _ - _ c  c o s 2 | 1 c o s 2 | + . o r 2 ; - t  b  c
c o s a '  - c o s 7 c o s ,  =  

@  
- c o s T c o s ;

_t cos2 f  + cosz |  + cos2 i  
-  t

c o s a . =  
@

Similarly we have

^^^L /  c t - ,s2  f  *  cos2 !  +cos2 !  
-  t

L U J U  

@

- ^ ^ ^ r  c o s 2  |  + c o s 2 |  + c o s z i  -  t
L U D L  

2 . * ; . * B

Norv we wil l consider cos B6

c ^ ^  
b  ^ ^ ^  c  ^ ^ ^  ^ t

c o s B g -  
L u ) 7 - L U ) t L u J d

sin !  s in a/

As noted in inequal i ty 4.3, we can shorv that Bo S f  by shorving

b c
cos I

2 -  2
b  -  c  ( c o s 2 $ + c o s 2 * + . o r 2 3 - l \

c o s _  2  c o s _ l # l
2  -  2 \  2 c o s f c o s !  )

\  c o s 2 ! + c o s 2 | + . o t z ; - t
L U J -  /  -

2  _  
2 c o s !

" b  " a  " b  . c
2 c o s ' =

2 -  2  2  2
" b  o &  o C

cos" =
2 - ' 2 2

[ * c o s b  1 * c o s a  1 * c o s c

2 - 2 ' 2 -
l  f  c o s b

1 * c o s b

From inequa l i t y  4 .6  we may say  1 f  cosb )  1 {  cosacosc .

S o ,  i f  r v e  c a n  s h o w  1 *  c o s a c o s c  )  c o s a  {  c o s c ,

we may conc lude 1*  cosb )  cosa *  cosc .

1 * c o s a c o s c

I  >  c o s a * c o s c - c o s a c o s c

1  >  c o s a * c o s c ( 1 - c o s a )
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Since we have shorvn 0 (  cosa (  1 and 0 (  cosc < 1.  we mav sav

I  )  c o s a * c o s c ( 1  - c o s a )

Therefore, we may conclude

b c ,
cos 

t
cosB6  >  0

B s  < ;

Similarly, rve rnay sa.y

1  >  g o ,  C u ,  A r  , C 1 , A 2 , 8 22 -

Turning to cos A' ,  we may say

cos A, :  
cos a'  --cos b'cos c '

s in b/ s in c/
'Iherefore,

. cos a'

c o s 2 f  + c o s 2 |  + . o r 2 ;  -  t  \  ( c o s 2 f  + c o s 2 f  + . o r 2 ; - 1 \

@ / \ @ /
(  r o " 2  | *  c o s 2  |  + . o r 2  ;  

-  1 \

\@/
c o s 2 f  * c o s 2 f  + . o r 2 i  -  t  -  ( . o , ' f  + c o s 2 f + c o s 2  3 - t ) '

@ -
- - 2 a  . r b ,  ^ ^ ^ z c  ,  \  ( . o r 2 f * c o s 2 ! + . o r 2 t - r ) '

c o s - t + c o s - 7 t c o s - - - r

1  \  c o s 2 ! + c o s 2 ! + . " r 2 ; - r, / @
-  o &  o &  " b  . C
2  cos '  -

" ?  " 3  0 c
cos '  

,
1  *  c o s a

2 - 2 2 -
1  *  c o s a

1  *  c o s a
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From inequa l i t y  4 .5  we may say  1*  cosa )  1*  cosbcosc .

So,  i f  we can show 1  *  cosbcosc  )  cosb f  cosc ,

we may conc lude 1*  cosa )  cosb *  cosc .

1 * c o s b c o s c

1  >  c o s b l c o s c - c o s b c o s c

1  >  c o s b + c o s c ( 1 - c o s b )

Since rve have shown 0 (  cosb < I  and 0 (  cosc (  1,  rve may say

l ) c o s b + c o s . ( 1 - c o s b )

Therefore, we nray conclude

cos a'

c o s A '  >  0

A '  < +- t

Similarly, we may say

1f

1 2  8 , , C ,

' Ihercfore, we rnay conclude that any triangle obtained from repeatedly applying triangle

subdivision to the octant and its children rvill be acute. Suppose we have a tessellation of

the surface of the sphere that has been generated by applying triangle subdivision to the

octants of the sphere and repeatedly to the resulting child triangles. Since each of these

triangles is acute we may say that it is Type I and conclude that the tessellation is an acute

tessellation. Additionally, we may conciude that the polyhedron that corresponds to this

tessellation is valence three.
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4.3 .4  The Edge-Beve l ing  A lgor i thm

Using labeling similar to that used in Doo's algorithm, we describe edge-beveling as follows.

We have Type F faces and differently defined Type E faces. Eliminating the Type V face,

we replace it with a new vertex called the Y-point, along with the three face points from

Doo's algorithm. The Y-point is at the intersection of the Type E faces that replace the

edges adjacent to a vertex.

We use a different definition for the centers of our faces. A center is chosen so that it is

the point at which the face is tangent to the inscribed sphere. For an original face we use

the centroid of that face for oul center, that is, for each of the cube's faces the center is

As the object is refined, ceutels are calculated for new Type E faces, but Type F faces

retain their center points; they are not lecalculated at each new level. As rve have described,

the ccnter of each new Type E facc is the midpoint of the geodesic betrveen the centers of

the Type F faccs adjacent to i t .

Given a level , t  vertex, Pf ,  and the center points,  Cl, i  and Cf, ;*r ,  of  t rvo of the adjacent

Type F faces, 'we may calculate tire rnidpoint of this geodesic. Assuming a sphere centered

on tlre origin, rve rvill calculate the normal vcctors at center points Cf,; and Cf,r*r. Since

these points are tangent to the sphere, the norrnal vectors are

1 a

C 9 = j \ - P 9,  A u

-1. (ti,)

KE )I
(t l ,* ' )

| ("i,.') |
We note that 

|  (air)  |  
is the ladius of the sphere.

Let Pf1;, ;y be the point ou Pf Pf*,  that is t l ie common perpendicular

As shorvn abovc, this is also the closest point on FtrE to ]  (Cf, ;  +

nerv center point,  Cf, | l r ,  is

I L ;  ; L 1

to Cf,; and Cj,i*r.

cf,;*r). Then the

f 1+r,t  L,(ci, + .i,*,)]c!,tr], : ( 1 - tu)Pl,t,,,t
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where

+ .  1

t  +  cos (dr)

zr '- cos-l ( i i | , ,  .rf ,r*r)

2

A new Type E face lies in the piane that is tangent to the inscribed sphere at Cffrl.
Thcrefore, the normal vector, d, of this plane is

"  -  
1 7 t - 1 ' 1 t \  I
|  \ - i + 2  /  |

With this point and vector rve have defincd the plane in which this face l ies. Each vertex

is replaced by a Y-point and three new face points. Since all vertices remain valence three,

each vertex rvil l  have three new Type E faces that replace the edgcs incident to it. When

rve have defined the planes in rvhich these three new Type E faces l ie, we may calculate this

vcrtex's Y-point along with the tl iree face points that replace the vertex.

Fol lorv ing the developrnent  in  sect ion 4.2,we rv i l l  consider  a cube wi th s ide lcngth 2 and

ve r t i ces  (+1 ,+1 , *1 )  (F igu re  4 .30 ) .  Each  o f  t he  cube ' s  f aces  l i es  i n  a  p lane  tha t  i s  t angcn t

to the inscr ibed uni t  sphere ccnte led on the or ig in.  As the cube is  ref ined,  a l l  nerv faces

cont inue to be tangent  to the uni t  sphere (sce I ' igure 4.5) .

Again,  consider  ver t ices

P 6  =  ( 1 , 1 , 1 )

P o , o  =  ( -  1 ,  1 ,  1 )

P o , r  =  ( 1 ,  - 1 , 1 )

P o , z  :  ( 1 , 1 , - 1 )

along with the adjacent tangent planes

Po,o = (Co,o, i lo,o)

Pot  =  (Co, r ,  f ,o , r )

Po,z  =  (Cs ,2 , f i s ,2 )

A
?

C( )
I
2

-r
t
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where the points at which the

rvith normal vectors

The thlee edges adjacent to Pe

rvhere

are the centers of the faces and

planes are tangent to the sphere are

C o , o  =  ( 1 , 0 , 0 )

C o , r  =  ( 0 , 1 , 0 )

C o p  =  ( 0 , 0 ,  i )

f o , o  =  ( 1 , 0 , 0 )

do , r  =  (0 ,  1 ,  0 )

i io ,z  =  (0 ,0 ,  1 )

are replaced rvith nerv Type E faces that lie in planes

Pt,o = (cA,o,mA,o)
. / \

P6,, = (C[,t, r i j ,rJ

P3,, = (c[,,,,;[,,)

cd,o =

cA,r =

cl,, :

- l
r . n  n

t  0 n  1

(,,+,+)
( * , , , * \
\ -  "  /(+,+,,)
l^ rt rt\( i l - - )

\ " t  t  t  t  I
\  -  - t

l r t  r t \
\  , ' u '  ,  )
\ /

lJ,  r t  ^\
\ . l t q r u l
\ '  '  I

can calculate tare the nolmal

by in tersect ing

_ t
ILo,z

vectors of t l ie planes.

these planes.

he Y-point

1r l PJ,o n n1,,, nn],,

88
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P6,o

P6,,

P6,,

Figure 4.30: Y-Point rv i th Three Nerv Face

geueral ,  then, given a vertex on the control  polyl iedron,

(rt J, rt\=  
\ T ' r ' 2 )

= Po,o O n[,, n n[,,

= ( t , r fz -  t , r / i  -  t )

= Pot i n]p n n],,

= ( { t  -  r , r ,J i  -  r )
= Pot o n], n l>[,,

= ( , / ,  -  t , r t  -  t , t )

Points

Pf , and the planesIn around
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i t , P!,o ("f,0, frf ,o),P!,, ("f,,, r if,1), and

Yf*t, and three new face points, Pf,ft,

Yf*t =

Pt+r  :

oA '+ t

.  ,  - t=  ( r _ r * ) y p 1 ; , 1 y i -

1
:

1  *  cosdt
- t  / - t7r  -  cos  -  

[ n ; . ; + r
U ' J  '

P!.,  (C!.r ,df .r) ,  we may calculate, , . \ . , . / .

that replacu Pf . n

p!,{ 'nnf{t nn!!L
p!, inP!, f ] ,nPf j ] ,
( r-k+l ;A'+t\
\ " t ' i  ' ' " i , i  )

the new Y-point,

ivhere

and

cf,l'

0p

,  t 1'n It ("f,,*, * tir*r)]

' frf, i*r)

2

" ^ *  
(P i ,  -  P f )  ( *  (@/p f , -  p f \

I ptq l l ; (.1 -, + cf,*,) e; | 
\ "r ' /

--r+1 - (t i l ' )''i'i 
ll"FTl

4.4 tr l l ipsoids

Fol lorving the discussion of el l ipses in 3.4, rve rvi l l  consider an el l ipsoid centered on theorigin

rvi th i ts axes al igned rvi th the axcs of the coordinate system

"  t a ' . "  - a
A 2 ' 8 2 ' C 2 - '

This el l ipsoid may be obtained by taking every point,  P"(",  y,z),  on the unit  sphere and

sca l ing  i t  to  a  po in t  on  the  e l l ipso id ,  P" ( rA ,yB,zC) .

In the same manner, we may begin with the cube (*1,*1,+1) and scale i t  into the

rectangular pr ism (+A,+.8,*C).  Using the method in sect ion 4.3.4, we may generate a

piecewise planar rnodel of the sphere and scale it to a piecewise planar model of the ellipsoid

such that every face of the model lies in a plane that is tangent to the ellipsoid at the face's

center (Figures 4.31 and 4.32).

{subscr ip t  j  modu lo  3
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I
',. i

\ l

Figure 4.31: Rectangular Prism after First Refinement

I
I
I

--l
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-

Figure 4.32: llectangular Plisrn after Second Refinement
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Chapter 5

Concluslons

in this paper) rve have presented an algorithm for producing piecewise planar approximations

of a sphere. Beginning with a cube, rve have produced arbitrarily close approximations of its

inscribed sphere by repeatedly bevel-cutting edges. We have shown how this method may

generate piecewise planar models for eliipsoids and spheres that are arbitrarily smooth.

We have discussed a simple procedure to construct an arbitrarily close piecervise linear

approximation of a circle and have adapted this procedure to Chaikin's algorithm. Using

this modification of Chailiin's algoritirm, rve have, in the limit, produced piecervise elliptical

curves.

\Ve may measure the snroothness of our models by comparing the angle (/) between

adjacent faces, uoting that 6 - r as ,t - m. It is uot necessary to measure each angle in

the model to see if it has the smallest / in the model; this may always be found by following

the worst case (smallest /) from one refinement to the next. That is, the search for the

smallest { is linear. Given a heuristic that associates the prominence of an object in the

scene with a minimally acceptable /, rve can calculate a priori the level of refi.nement that

will contain an acceptable level of detail. Suppose we had a scene that contained several

spheres and ellipsoids. We could calculate the minimum and maximum / needed to produce

acceptable levels of detail. Using this /, rve could calculate the minimum and maximum

levels of refinement recluired. Starting rvith the unit sphere, we could pre-generate and store

models at the levels in this range. When a spltere of radius r with a required level of detail

A rvas needed, we could translate and scale the unit sphere model at level ,t. For ellipsoids

rve rvould first scale the unit sphere along eacli of its three axes separately, using the A, B,
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and C for this ellipsoid, then translate and rotate it into position in the scene.

5.1 Further Work

The model meshes we have used throughout chapter 4 have had a regular topology. We

would like to extend this method to more arbitrary, if not completely arbitrary meshes. One

problem that must be overcome concerns edges that over-cut neighboring faces. Consider

the followine level & = 0 model.

Cutt i r lg  -  p l  an e
ove r -cu ts  sma l l f a ce

Figure 5.1: Over '-cutt ing Small  Face

Here rve have a cube that has had one of its corners cut off slightly. Our method only

considers tlte faces adjacent to an edge rvhen deciding horv deeply that edge is to be cut.

I f  rve cut of fedge €s,1, w€ wi l l  completely remove the face formed by points Ps,P6,2,Ps.3.

o 1



The question remains, horv rvill this be done? We have explored two approaches without
success.

First ,  we could attempt to individual ize the process to a vertex. The idea is to use only
local information to calculate tlte nerv Y-point and the three new face points at each vertex.
To do this, rve would no longer retain the center points for each face but would calculate
them on-the-fly for each vertex. In pursuing this approach, we noticed that the faces of the
cube and all refinements of it had an interesting property. At any level of refinement of the
spherical approximation, consider any edge along rvith its adjacent faces. They rvill have:

1. The centers of the faces equal distance from the edge.

2. The closest point on the edge to onc of the centers is also the closest point on the
cdqe to  t l re  o t l t c r .

\ \ 'e found this property to be suggest ive of t rvo-dimensional Vorinor i  diagrams. Considcr a
vaience-three vertex of a Vorinor i  diagram rvhele rve have the edges, but not the data points
(center Ttoints) frorn rvhich tire tiles were genel'ated. Using only the vertex and the three
rays emanating from i t ,  i t  is possible to calculate center l ineson which the center points l ie.
I3y intersecting the lines from trvo vertices of the face we may find the tile's data or center
point. \AIe rvcre able to adapt this rnethod to our surface tiles and on the spherical model
caiculate the center points from the information avai lable from the vcrt ices only.  I lorvever,
i t  is urtc lear ] torv \ \ 'e can apply this to less uniform models. For instance, the rectangular
pr ism used to rnodel an el l ipsoid does not have property 1 above, and i ts center l ines do
not necessarily interscct at a unique point. With further research we may be able to find a
satisfactory rvay to combine these differing center points into one center for the face.

Secondly, our algorithm also has the property that all nerv Type E faces are parallel to
the edges they replace. \Ve considered the possibility of relaxing this so that the cutting
plane used to define this face rvould not necessarily be parallel to the edge. When we define
a new center point for our lle\\' Type E face, rve blend the center points of the trvo adjacent
faces. Not only is the new center point at  the midpoint of  the geodesic from the two adjacent
centers '  as in sect ion 4.4, but the normal vectol  at  this point is a blend of the trvo norma.ls.
\\'e have explored schemes to malie the nerv center point and the normal at this point not
only a cornbination of the ttvo adjacent points but also the two center points of the faces at
the end of the edse.
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Cut t ing :p lane  no t
p  a ra l le l  to  e  dge  €  o , r

Po,a

Figure 5.2: Non-paral lel  Cutt ing-plane
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