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Abstract

We will discuss a simple procedure to construct an arbitrarily close piecewise
linear approximation of a circle and, in the limit, the circle itself. Beginning
with a square, the inscribed circle may be better approximated by replacing
each vertex of the square with a line tangent to the circle forming an octagon.
By repeatedly applying this algorithm to the resulting figures, closer approx-
imations may be obtained. First, we will adapt this procedure to Chaikin’s
algorithm, modifying it to produce rational curves in IR?. Next, extending this
method to IR3, we will consider a cube to be a piecewise planar approximation
of its inscribed sphere. Better approximations will be obtained by bevel-cutting
each edge of the cube with a plane tangent to the sphere. In the limit, this

process will yield the sphere itself.

viii



Chapter 1

Introduction

In Computer Aided Geometric Design (CAGD) the representation of general shapes is a
fundamental problem. Parametric B-spline surfaces, including Bézier patches, are often
used by design systems to model free-form shapes. Two of the most commonly used regular
shapes are the ellipsoid and the special case sphere. We would like representations of these
to be casily defined, quickly generated, and mathematically accurate. Polynomial B-splines
do not lend themselves to accurate representations of ellipsoids and spheres; we must resort
to non-uniform rational B-splines (NURBS). Suppose we wanted to model a hemisphere.
A straightforward method is to create a geodesic arc from the pole to the equator using a
rational B-spline. Then form the surface by revolving this around the pole. This creates
a bi-quadratic B-spline surface. However, the surface is degenerate since one of its edges
collapses to a single point at the pole. There are many reasons we may want to calculate
the surface normals of the hemisphere, including shading during rendering, but it is very
difficult to calculate the normal at this degenerate pole. There are other tiling schemes [3]
and we may resort to rational triangular Bézier patches. However, a rational quadratic
Bézier patch is inadequate; we must use a rational quartic patch [8].

With the speed and memory of our current generation of graphics workstations, an old
paradigm is regaining popularity — the surface based upon a mesh of control points with an
arbitrary topology. These geometric methods, commonly called corner-cutting, whittling, or
woodcarvers algorithms [4], are extensions of the NURBS techniques to an arbitrary mesh of
control points. This arbitrary mesh, extended from the rectangular mesh of NURBS, allows

reat flexibility in the model’s definition, and the simple geometric algorithm insulates the
g y g g



user from the mathematical details. The current methods, initially developed by Doo and
Sabin [5] [6] and Catmull and Clark [1] are based upon the subdivision rules for quadratic
and cubic uniform B-spline surfaces respectively. The formulation allows us to specify an
arbitrary underlying topology for a mesh structure and specifies a procedure so that the
mesh can be successively refined to represent a closer and closer approximation to the
surface. These surfaces, which have been shown to be tangent-plane continuous, can be
modified by alternate subdivision masks [10] to represent surfaces with edges, darts, and
cusps, giving a tremendous variety of surfaces possible.

We wish to add to these methods by specifying a method that works on a decidedly
different geometrical paradigm, edge-cutting. We propose not to cut the corners but to bevel
the edges to produce our surface. In this paper we develop a method to obtain piecewise
planar approximations of ellipsoids and spheres by cutting the edges from rectangular prisms

and cubes, respectively, and repeatedly applying the method to the results.




Chapter 2

Background

There is a common method used by sailboat builders to create a cylindrical wooden mast
from a rectangular column. On a full-sized drawing of the column’s cross-section, the desired
cross-section of the finished mast is drawn (Figure 2.1).

Then, tangent lines to the finished shape are drawn so that the column’s corners are
removed. Using these tangent lines as a reference, marking gauges are constructed and used
to transfer the reference lines to the faces of the column. Then the edges are removed by
either sawing or planing to these reference lines, creating a new face for each of the original
edges. This process is repeated on the new edges until the column is smooth enough for final
sanding. The resulting mast may be circular if the original column is square. Any other
oval shape may also be produced. From the two-dimensional drawings this corner-cutting

method has been extruded to the three dimensions of the wooden column.

2.1 Chaikin’s Algorithm

In 1974 G. M. Chaikin [2] presented his algorithm for generating curves from data points.

Given a curve represented by the control points Pg, Py, P2, and P3, this method generates

a curve that is tangent to the lines P;P3, and PoP3 at the mid-point of each (Figure 2.2).

The curve is generated by dividing each line into three parts so that the ratio of the
parts is 1 : 2 : 1. Then, the corners are removed by connecting the new points adjacent
to each corner. This process may be applied repeatedly until the desired smoothness is

achieved. In the limit, the resulting curve will be made up of parabolic segments and is a




Shaded areas removed by first cut

Tangent lines
marked at corners

> /L‘ Cross section of finished mast

drawn on full size column plan

Marking Guage ( )

Figure 2.1: Cross-section of Wooden Mast

uniform quadratic B-spline.

2.2 Doo’s Algorithm

A method to extend Chaikin’s algorithm to three dimensions was presented by D. W. H.
Doo [5] in 1978. Given a polyhedron composed of vertices and faces, new smaller faces are
formed that result in a smoother polyhedron (Figure 2.3). In this method, the centroid
of each face is found. New vertices are obtained by combining the centroid of a face with
each vertex of that face using a weighting function. Given an n-sided polygonal face with

vertices Py, ..., P,_1, the centroid, C, is:



Figure 2.2: Chaikin’s Algorithm

1n—1
C:Z;P"

Each valence n vertex is replaced by n new points called face points . A new face point,

P+l from a vertex, P¥, is:!

PH1 —¢PF (1 -1t)Ck

with the usual value for t = % This results in three types of new faces:

!We will denote the level of refinement by the superscript k. The original control pelygon or polyhedron
is at level k = 0. After one refinement it is at level k = 1.



Cube One refinement

Figure 2.3: Doo’s Algorithm Applied to a Cube

o Type F (formed by face): a new smaller face that replaces one of the original faces.
This type of face will have the same number of edges as the original and will be smaller

than the original.

o Type V (formed by vertex): A face that replaces each original vertex. These faces

will have the same number of edges as the valence of the original vertex.

¢ Type E (formed by edge): A face that replaces an edge between two original faces.

These will have four edges.

Using this method, new polyhedra are produced that are composed of all three types
of faces. For each n-sided face a new, smaller n-sided face is produced. These faces always
remain n-sided and gradually get smaller, converging to the centroid. Each vertex of valence
m produces a new m-sided face that becomes a smaller m-sided face of Type F. Each edge
between faces is replaced by a four-sided face that becomes a four-sided Type F face as it
is processed. Doo demonstrated the resulting objects that are obtained when this method

is applied to a cube using various weighting functions to define new vertex points.



2.3 Review of Conics as Rational Quadratic Curves

A fundamental result in CAGD is that conic sections can be written as rational quadratic
curves. In this section we review much of this material, writing the conic section in standard
form as a rational quadratic Bézier curve.? Although there are many different ways to define
conic sections, we will define them as follows: a conic section in IR? is the perspective
projection of a parabola in IR® onto a plane. Considering rotations and translations, this

plane is usually considered to be the plane w = 1, and points on the parabola of the form
we z

wy | are usually associated with (projected to) the point | y | in the plane w = 1.

w 1
Suppose we are given a conic, C(t). Let P(t) be a corresponding parabola that projects

to C(t). Since P(t) is a parabola, we can write it in Bézier form as
P(1) = PoBoa(t) + P1B12(1) + PoBy (1)

T
where P; = | y; | are points in IR%, and the B, are the quadratic Bernstein polynomials.

w;
We can write C(t) as

C) = | wl(t)

Clearly then, the parabola can be written as

w(t)ze(t)
P(t) = | w(t)y(t)
w(t)

where w(t) = woBo,2(t) + w1 By ,2(t) + waBqo(t), as this projects to C(t). Now, we can write

. w(t)ze(1)
2_PiBia(t) = | w(t)ye(t)
w(1)

*Most of this section was adapted from pages 233-237 of [8].



[ 2e(t) [Sho wiBin(t)]

= | () [ShowiBia(t)]

(S0 wiBia(t)]

2 zc(t)

= . wiBi'2(t)J yc(t)
L1==0 1

r

and, therefore, we can write the conic section as

_ PoBoa(t) + P1B12(t) + P2 By o(2)

C(t) =
( ) woBng(t) + wlBl,z(t) + ’w2B2,2(t)
and if we set
Zy
wy
pi=| L
1
then
clt) = wopo Bo 2(1) + w1p181,2(t) + wap2 Bz 2(2)

woBo,2(t) + w1 B1,2(t) + wy B o(1)
We call the points p; the control points of the conic and the numbers w; the weights of

the corresponding vertices. Thus, the conic control polygon is the projection of the control

polygon

which is the control polygon of the 3d parabola, P, that we projected into C.
This form is called the rational quadratic form of a conic section. If all weights are equal,
we obtain the non-rational conics (i.e., parabolas).

A Circle as a Rational Quadratic Bézier Curve

Consider the parametric equation

42
z(t) = }—+§7
y(t) =

oo



for 0 <t < 1. We can show that this equation forms a quarter circle by calculating

2242 = 1—t? 2+( 2t )2
7 \1xe 1412

1 — 22 + ¢4 + 4¢2
(1 + 12)?
1+ 2t2 + ¢4
(1+12)2

= 1

Thus all points of the curve lie on the unit circle, and as ¢ ranges between 0 and 1, the
quarter circle in the first quadrant is traced.

This implies that the rational quadratic Bézier curve given by

-

1Bo2(t) + 1By 2(t) + 082 9(t) (1-1)2+21-t)t+0
0Bo2(t) + 1B12(t) + 2Bas(t) | = 0+4+2(1—t)t+ 22
1B0,5(t) + 1By 2(t) + 2B22(1) (1= 4201 - t)t + 242
1-2t+1% 42t — 212
= 2t — 2t2 4 212
|12t 487 42t — 207 + 24
[ 1- 12
= 2t
1422

is a circle. The three control points that define this rational Bézier curve are

1 1
(Po,P1,Py)=] 0 1 2
1 1

This translates into the projected control points

1 1 0
0 1 1
1 1 1

with wg =1, w; = 1wy = 2.



Reparameterizing the Curve into Standard Form

We can put this circle into an alternate form, called standard form, with we = we = 1. To

do this, we make a parameter change® replacing t by

~

t
p(l=1)+1
and (1 —1t) by )
p(L-1)
p(l—t)+1

Simplifying the equation of the conic after this reparameterization, we obtain

plwopoBo(t) + pwip1 B 2(t) + wep2 By o(1)
p?woBo 2(t) + pwi By 2(%) + w2Bz,2(ﬂ

where the p; are the projected control points of the rational quadratic above. If

c@) =

w2

Wo

then the equation of the circle can be rewritten as
wypoBoa(t) + V22w py Bi,2() + wepa Ba o(f)
w2 Bo2(f) + /%2 w1 By 2(1) + w2 By o(f)

cl) =

In our case, p = /2, wp = w; = 1, and wy = 2, and we obtain

_ 2poBo2(t) + v2p1 B1,2(E) + 2p2Ba o (f)
2Bg2(1) + V2B1 (1) + 2B, 2(%)

After dividing all the weights by 2 (which divides both numerator and denominator by 2

C()

and makes no change in the curve), we obtain

_ poBoa(t) + l@PlBl,z(t) + p2B2o(t)
Boo(t) + 431,2@) + By (1)

C(t)

which is in standard form.

Therefore, we can write our quarter circle as a rational quadratic curve with projected

control points

1| 2] o
o |2 |1
1| | 2 1

3See Farin [8], page 236.
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Chapter 3

Two Dimensions

3.1 Constructing a Circle from a Square

We will present a method to construct a sphere by refining a cube. To lay a foundation
for this we will examine the two-dimensional case. This will give us insight into the three-
dimensional case. The procedure we will usc is a generalization of a simple algorithm that
creates a circle from a square by first cutting off the corners of the square and successively
cutting the corners of the resulting objects. This algorithm can be easily defined if we start

with a basic square of side length 2 shown in Figure 3.1. We inscribe a circle in the square,

which will have radius 1.

Figure 3.1: Circle Inscribed in a Square



This square has four sides, each of which is tangent to the circle, and each has its
midpoint on the circle. Our refinement procedure will iteratively produce polygons that
have a similar structure: after the kth iteration the polygon will have 2¥+2 sides, each of
which has its midpoint on the circle. We can illustrate this procedure by showing the results
of successive applications of the refinement. We begin by cutting off the four corners of the
square.

Consider an arc of the circle between two consecutive points where the square and circle
coincide. We construct the tangent line to this arc at the midpoint of the arc. Using this
tangent line as a cutting plane, we can cut off the corner and construct a new polygonal
shape where the corner of the square has been removed (Figure 3.2).

Tangent
line

J

Midpoint /

of the arc

This area
is removed

Figure 3.2: Corner of the Square

If we do this process for each of the four quadrants, we obtain the new polygonal shape
shown in Figure 3.3 with the circle inscribed in it.

We have doubled the number of segments in the approximating polygon - square to
octagon. We now perform a similar geometric operation on this figure (Figure 3.4). Consider
the arc of the circle between successive points on the control polygon that are tangent to
the circle. Construct the tangent line to the midpoint of this arc.

Cut off the indicated region using the plane of the tangent line as the cutting plane. If
we do this for each of the eight circle segments between successive points where the circle
and octagon intersect, we obtain a new polygonal shape which is shown in Figure 3.5:

This polygon has sixteen edges each tangent to the circle. Each of the edges has its

midpoint on the circle.

12
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N

Figure 3.3: Square Refined to Octagon

This area
is removed

Figure 3.4: Corner of the Octagon

The general idea with this algorithm is to continue this process indefinitely. Visually,
the polygons generated can be seen to be converging to a circle, and it is easily seen that
geometrically this is also the case. In general, we are creating, with each iteration of this
algorithm, a polygon for which all edges are tangent to the circle. In the kth iteration, the

polygon will have 2¥+? edges, and the midpoint of each edge will be a point on the circle.
yg g

3.2 Defining the Algorithm Geometrically

3.2.1 First Method

Consider a control polygon (Figure 3.6) that represents a square containing the four control

points Pg = (—1,-1), Py = (~1,1), P; = (1,1) and Py = (1, -1).

13



p
N

Figure 3.5: Sixteen-sided Polygon

Using the general outline of the algorithm given in section 3.1 above, generate a refine-
ment of this control polygon by defining a new set of control points
{5, P, P}, P}, P}, PL P, P
where for 0 <7 < 3,
o each of the control points P}; and PL,, | is on the line segment P!P!, ,, and

o the line P1._ Pl is tangent to the circle at the point where the line from the center
21—-1% 21 g P

of the circle to P; intersects the circle.l

For example, examine the upper right-hand quadrant of the polygon in Figure 3.7:
In calculating the exact position of P} on the line P,P;, we can see that dy = 2 — /2,

and the point P} is defined by

2—d; 2—d;
P! = (1— )P P
3 5 1+ 5 2

dy dl)
ey (124,

(-)rg

I
|
N
+

I

1-—|P -—_P
5 1-}-2 2

= P14+ (1-1%)P,

!We note that our subscripts are all written modulo 8.

14



Pl P2

Py P3

Figure 3.6: Inscribed Circle: Method One

where tg = 1 — 5@ By symmetry P} is defined by

P! = (1 —1t5) Py + toP;

Considering, then, all four corners of the square, we can sece that the refinement can be

described as

Pl = (1-t)P;+toPiy
Py = tPi+(1-1)Pip

and we obtain the new control polygon that is shown in Figure 3.8:
For the next refinement we calculate the control polygon, {P?:0<i< 16}. An ex-
ample that illustrates this case is given in Figure 3.9:

Ilere we have that

o 1Py +(1-4)P}

Pg = (l—tl)Pé-{-thl

where



P,

(0,0)

P; P, -
11
(4. 2) j_
P
2
) X
Py

Figure 3.7: Upper Right-hand Quadrant

and [ is the length of an edge of the octagon, that is

l

and

We can then calculate that ¢; & 0.25989, which enables us to calculate the control polygon

in Figure 3.10.

To generate the general value of t;, we refer to Figure 3.11, which illustrates an arc of

the circle subtending an angle of 24.

= 2-2d,
= 2-2(2-V72)
= 2(v2-1)

L g 225°
2
2(v2 - 5°
(V2-1) iap 225
2 2

16



P; P;

Figure 3.8: Control Polygon at Level k£ = 1

In Figure 3.11 point P is at the intersection of two tangent lines, each tangent to the
circle at the endpoints of the arc subtending an angle of §. P therefore lies on the line that

is the bisector of the angle 6, and to calculate P from Py and Py, we form
P =Py + (P, — Po)

where
tanf — tan &

ity = 2
2tané
Simplifying ty, we obtain

tand — tang

2tand
1 - tan%
tan 6
sin @
(1 _ 1+cos€)
sind
cos
( cos @ )
1] — 27
1+ cosé

= 3o
"~ 2\1+cosf

Initially in our refinement § = Z, and substituting this into our formula for to, we have

1 1
) 1+COS%

17
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Nl = o~

tg=t

L}



R

as before. Continuing this, we obtain

1 1
h=tz=- | —— | ~0.2
1= tx 2<1+COS§> 0.25989

and in general

. . 1 1
2F42 2\ + cos (EF%)

We note that {p — % as k — oo. Thus, the value of ¢ is based on the level of refinement.
Subdivision schemes that incorporate the level of refinement into the algorithm are known

as non-stationary schemes. (7]

If the initial control polygon is written as {PJ, P9, P9, P} then the elements of the kth

control polygon can be written as

PS5 = tk—lpf_lJr(l—tk—l)Pfﬁl

Pl = (1-no)PEtg te1 PE]

18



4
P | PZ
P2 P2
P3 P3
p} P}
P P?
P Pi,
Pi, P,
Pl | P},

Figure 3.10: Complete Level & = 2 Control Polygon

3.2.2 Second Method

In this section, we adapt the algorithm presented in section 3.2.1 to make it somewhat
simpler to analyze for our "non-circle” cases. In this adaptation, we represent the points
that are tangent to the circle as additional control points in the control polygon.

In the initial case of the square, we now have eight control points in Figure 3.12. This
may not look like a big change, but it will enable us to analyze the circle in pieces. In par-
ticular, each piece is defined by three control points, two of which are tangent to the circle.
Take, for example, Figure 3.13, where we have an initial set of control points {Pg, Py, Py},
and the generated refinement, {Pé,P%,P%,Pé,P};}.

In this case the refinement algorithm generates a new point tangent to the curve (P1),

and two new control points, (P} and P}). By symmetry we have

P(l) = Py

P% = (1-1t9)Po+ tyP,
1 1

P, = §P% + §P§

Pé = 4Py -I-(l—tg)Pg

P; = Py

19



I~ tan @ >

Po P Pl

Figure 3.11: Calculating #g

where
9 sin §
) = tans  Ticesg  cosd
- ~  sinf T
tand sne 1+ cosf
Again, we initialize our iteration with § = % and proceed with 0 = 575 for k =
1,2,3,4,...

Consider the length of the arc from point Py to Py (Figure 3.11). The point Pl is at the
midpoint of this arc. Additionally, it lies on the line P; P, where P, is the center of the arc.
After one refinement we have replaced point P; with the edge m When we consider
the arc from P} to P, we notice that it is bisected by the line PLP.. In general, when
we refine our control polygon from level k to level £ + 1, we halve the arc length between
adjacent control points on the arc. Additionally, if control points Pf—‘ and Pf‘+2 lie on the
arc, the line P_f_:_P—c bisects the arc from P¥ to P¥,, and bisects the line PfoH From
the definition of a radian it follows that we halve the angle between the radii to adjacent

control points on the arc when we halve the arc length between them.
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P, P, Py

PQ P4

P7 Pe P5

Figure 3.12: Inscribed Circle: Method Two

Consider the ratio of g to 1 —ty.

cosf
1+4cos 6

- __ _cos¥
1 to 1 1+4cosd

_cosf_
14coséd

1t+cosf cosd
l1+cosé 14+cos@

cos @
. 1+4cos?
1+4cos @

= cosé

We will call the ratio of ¢ to 1 —t, the parametric ratio. As the object is refined, the standard

parametric ratio of ¢ to 1 — t; is

(3.1)

fork =0,1,2,3,..., where « is the interior angle? between the original (level k = 0) adjacent

edges. For the square, o = 5

The general case can be written as

ko opkel
Py = P;

Pl2cz'+1 = (1- tk—l)P,l-c“l + tk—lpf-:]l

*The smaller of the two angles formed by two rays emanating from a point
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Figure 3.13: Calculating the Arc of a Circle

1 1

k n n

Py = 55 2i41 + §P2i+3

Phis = taPil+e(1- th-1)P{5y
k k-1

Poiva = P,

s
; COSW
=
1 + cos 5347

We note that ¢, — % as k — oo.

3.3 Chaikin’s Algorithm on Rational Curves

The procedure described in section 3.2.2 may be thought of as an adaptation of Chaikin’s
algorithm (section 2.1) so that rational curves may be produced. Chaikin’s algorithm may
be modified so that it will interpolate the end points by use of phantom control points to
replace the end points. We will consider a variation of Chaikin’s algorithm that interpolates
the end points and modify this so that rational curves may be produced . Consider an

original (k = 0) control polygon of n points

{POaPlv -"aPn—QaPn—l}
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where points Py and P,_1 are tangent to the curve and all other points are non-tangent

points (Figure 3.14). To refine the polygon to level k 4 1 the modified algorithm is:

1. Atlevel k+1 insert a new tangent point at the midpoint of each edge that is bounded
by two level & non-tangent points. For example, to process the level ¥ = 0 contro]
polygon, we insert a level k+1 new tangent point at the midpoint of every edge except

PyP; and P, _2P,_{. The resulting control polygon is

{Pé,Pl,Pé,PQ,Pé, -“7P;(n_q)aPn—3,P§(n_3)aPn—?aP:I«;(n_Q)}

where
P(l) = PO
Pé(n—?) = P"‘l
1
Ph = (Pt Py

and points P}, Pé(n_Q), and P3; are tangent to the curve.
Generally, we use the midpoint method to define new tangent points. The midpoint
method is defined as:

1

PhH _ 5 (Pt + Ph,;)

That is, the new tangent point is at the midpoint of the new edge.

2. Separate the level & control polygon into parts that contain three points: tangent
point, non-tangent point, tangent point. Our original control polygon would be sep-

arated into:

{Pg, P}, P}}

{P3, P3, P}

{Pé(n—ti) ’ P2—37 Pé(n—-B)}

{Pé(n—3)a P2—2’ Pé(n—?)}

We now have n—2 contro] polygons each of which contains three points and s tangent

to the curve at its end points.
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3. Replace every non-tangent level £ point, P¥, with two new non-tangent level k + 1

points, P§$11)+1 and Pg(’;il)ﬂ at, the midpoints of the edges adjacent to Pf.

1
k k k
Pszi1)+1 = 5 (Pi + szﬂl))
1
k _ k k+1
P3?z-'l1)+2 DY (Pi + Pssr )

Continuing with our example, we would replace P with P} and P} at the midpoints

of PoP; and P PL. Our completed level £ +1 control polygons would be
{P5, P1,P3, P3}

{P3, P}, P;, Pg}

{P113(n~—4)’Pili(n—4)+1’Pll3(n—4)+2’P113(n—3)}
{P3_5) Phneay+15 Phnesyizs Pan-2)}

For example, in Figure 3.14 we are given the control points {Po, P1,P2,P3} and may
generate a curve that is tangent to PoP; at Py, to P,P3 at P3, and to PP, at its
midpoint. We start by adding a new tangent point (P3) at the midpoint of PP, then
divide the control polygon into two parts, {P}, Py, P3} and {P1,P,, P}, For each half we

replace the corner points, Py and Py, with two new points that are at the midpoints of the

adjacent lines. So we have
P, = P
P% = (1—t)P0+tP1
P} = (1-t)Pi+1tP;

P, = (1-t)Py+1tPy
P! = (1-t)P}+1tP,
Pé = (1—t)P3+tP2
Pé = P3
where
o1
)
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Figure 3.14: End-point Interpolating Chaikin’s

These new points are: P1, P} to replace P9 and P}, P} to replace P3. The separated
level k+ 1 control polygons are {P}, P}, P}, P1} and {P}, P, P}, P¢}. This process may be
repeated until a piecewise linear approximation of sufficient smoothness is obtained, and,
in the limit, a piecewise parabolic curve is generated.

Suppose we wanted to use a Chaikin-like algorithm to produce a curve that is, in the
limit, piecewise circular arcs. Considering the example above, we will show that arcs of

circles may be generated provided the original control polygon satisfies

‘P0P1I+|P2P3‘=\P1P2‘

Until now, we have used the midpoint method to define new tangent points. At the initial

level, however, we cannot necessarily do this and produce circular arcs. In Figure 3.15 we
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have two points on a circle, Pg and Pj, that are not opposite each other. The lines tangent

to the circle at these points will intersect at a point P,.

P,

Py

Figure 3.15: Tangent Line Intersection

If we compare the lines PoP, and PP, we will find that

7iFs |- | o

The points Pg, P,, and P; could be used as the control polygon for the arc of the circle
from Pg to P;. Using our process, circular arcs require three-point control polygons with

sides of equal length. Therefore, we will not necessarily use the midpoint of P;P, for the
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new tangent point P1. Instead, P} is chosen so that
- s

and

715 | - | o)

Figure 3.16: Rational Chaikin’s to Produce Arcs of Circles

Once we have guaranteed that the edges of our separated control polygons are of equal
length we may return to the midpoint method for choosing our new tangent points. With
the insertion of P} we separate our original control polygon into two parts. Part a is
{P}, Py, Pi} and part b is {P}, Py, P}} where P§ = PJ and P§ = PJ. Points P}, P}, P1,
and P} are obtained using ratios. These ratios are based on the angles between the sides

of the separated control polygons. The new tangent point P} is

Pl =(1—1)P; + Py
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where

to = te——t

PoP;
IPng [

The new non-tangent points are

P% = (1 — tO,a)PO -+ to'aP1
P}, = (1-tya)Py4+1,P}
where
P cosp o
Oa =7 + cosfy,
1 Pl-P))-(Py-P
Be = = | — cos? (P35 —P1) - (Po—Py)
2 ‘P}3P1 HPOP1 |
and
Py = (1—top)P3+1t0Po
P; = (1-to4)P3+10,P,
where
P cos g p
0.6 =7 + cos g p

0 _1[ R ((Pé—P2>'(P3—P2))}
0b = T — COS —
: [

Notice that we do not use fy = § for our initial refinements. The initial value, g, is 1 the

2
supplement of the interior angle between adjacent edges.

This initial angle («) is called the parent and this value is used at each level as its children
are refined. Using the original interior angle (o) between adjacent sides, the general form

for 6 is
T —

Ok = S

When we are refining a circular arc, we may measure the interior angle (¢) between
adjacent edges at any level & of refinement and find

_T-—a T—¢
b= S = —5
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7

8

radians

Figure 3.17: Measured Angle at Level k = 2

nr

For example, in Figure 3.17 we have refined our quadrant twice (k = 2).
K3

The interior angle (¢) is measured to be

and a = 7. 0 is calculated to be

23 16
l .
5 the supplement of ¢ is
r
T — 'g' _ 1
2 16
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3.4 Ellipses

Consider an ellipse centered on the origin with its axes aligned with the z and y axes of the

form
2 2

< Y
ct 2

We may scale this ellipse by D? resulting in an ellipse with a minor axis of one and the

=1

same ratio of major to minor axes.

Figure 3.18: Sphere Scaled to an Ellipse

Letting
02
2 _
S
we have an ellipse
z? 9
Tty =l

Now compare this to the unit circle centered on the origin

z2+y2:1
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P P- Ps
Po P. —
P Pe Ps

Figure 3.19: Control Polygon of an Ellipse

Figure 3.18 we may take any point P, (z,y) on the unit circle and scale it to a corre-
sponding point P, (Az,y) on the ellipse. [9, pages 201-210]

Similarly, we may take a square with vertices (+1,+1) that can be used as the control
polygon for the unit circle, stretch it into a rectangle with vertices (£ A4, £1), and use it as
the control polygon of the ellipse (Figure 3.19)

2
z 2
vl
Consider two non-opposite points, P§ and P{, on a circle in Figure 3.20. Lines tangent to
the circle at these two points intersect at P¢. We may generate the midpoint, P§, of the arc
2

between them using the standard parametric ratio® where « is the interior angle between

the lines PgP¢ and P{P¢. If we scale the 2 coordinates of these points by A we will obtain
the corresponding points on the ellipse, P§, P{, and P§.

We may refine each quadrant individually. Starting with the upper right quadrant in
Figure 3.21, we use the same method as in section 3.2.2, using the standard parametric

ratio cos f573y- The parent angle (@) is the angle between a pair of original adjacent

®See Equation 3.1 on page 21
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Figure 3.20: Scaling a circle to an Ellipse

edges. To refine elliptical curves, we will require that the parent angle (a) is %- As shown
in Figure 3.17, when refining a circular arc, we may stop at any level k, measure the
supplement of the interior angle between any two adjacent edges, and find it to be .
This is not the case with the rectangle; the scaling transformation, while affine, is not angle
preserving. However, if we use standard parametric ratio cos 57(%0‘17 in our refinement and
begin with all @ angles of 7, the resulting curve will be piecewise elliptical. Refining the
rectangle to level k using this non-stationary ratio is equivalent to refining the square to
level k and then applying the scaling transformation to the resulting figure.

For example, in Figure 3.22 we are given a control polygon, {Po, P1,P2,P3,P,}. We
begin by inserting new tangent point P} at the midpoint of P;P3 and P} at the midpoint of
P,P3. Now each section, {P},P1,Pi}, {P}, Py, Pl}, and {P}, P3, P}} is processed. Note
that P} = P and P} = P4. In this example, the first arc is tangent to P} and Pl the
second is tangent to P4 and P}, and the third is tangent to P} and P}. The arc from Py

to PJ is the arc of a circle since

7ors |- |
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Po Pi P

t - !
ETET L a

Figure 3.21: Quadrant of an Ellipse

Py .

pi P:
P7 &

! = .
Po Po P, bl P

Figure 3.22: Piecewise Elliptical Curve
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3.5 New Tangent Point Selection

When we generated arcs of circles in section 3.3, we chose a value for ¢ such that the new
tangent point, P3, was not guaranteed to be at the midpoint of P, P, (see Figure 3.16).
However, in section 3.4 we used midpoints for our new tangent points to generate ellipses
(see Figure 3.22). In general, we are free to chose the level k£ = 0 new tangent points as we
please. To obtain arcs of circles, the new tangent point was chosen so that each separated
control polygon would have edges of equal length; this is a requirement of circular arcs.

For rational curves we will always choose the midpoint of the new edge as our new tangent

point.
P P. Zﬁ Ps
b P4
{=
Po e
P Ps Ps

Figure 3.23: Closed Piecewise Elliptical Curve

In Figure 3.12 of section 3.2.2 we chose points Pg, Py, Py, and Pgs at the midpoints
of the square’s edges so that they would be on the inscribed circle. If we choose different
new tangent points at level k = 0 and, then, for £ = 1,2,3,4..., use the midpoint method
to define new tangent points and the standard parametric ratio, cos 755, where a = 7, we
would generate a closed curve made from elliptical arcs. In Figure 3.23 the tangent points,
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Pg, P, P4, and Pg were chosen so that

[PPin| 1

[PePiz| 3

for 1 = 1,3,5, 7 with all subscripts modulo 8.
With appropriately chosen new tangent points it is possible to begin with any polygon
that has all of its sides tangent to the circle and refine it to produce the circle. To do this we

use a different a for each section so that each is equal to the interior angle of that section.

3.6 Sheared Circles and Ellipses

on] s
-
.

Figure 3.24: Sheared Circle

(x+Sy.y)
(x,y)

(1,0)

If we apply a shear transformation to the square (+1,+1) along the z axis, we get the
parallelogram (1 + 5,1), (1-95,-1), (-1 -.5,-1), and (-1 + S,1), such that every point
(z,y) on the square becomes a point (z + Sy,y) on the parallelogram [9, pages 201-210].
Again, we may create a sheared circle by applying the shear transformation to each point

on the circle (Figure 3.24)%.

4We note that a sheared circle and a sheared ellipse are both ellipses
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A bt 1t (

1+S,1)

(1-t)

m—x
cos —z(m) a:,-r/g

Figure 3.25: Sheared Square Control Polygon

We may obtain the same results by beginning with the parallelogram as our control poly-

gon and refining it using the midpoint method from section 3.5 and the standard parametric

ratio, cos 357, with a = 7 (Figure 3.25).

When we apply both a scaling and shearing transformation to a square, we have another
parallelogram (Figure 3.26). We may use this for our control polygon and obtain a sheared
ellipse when the refinement method is applied.

If we consider an octant of this parallelogram, we find that it may be used as a model
for a general two-dimensional control polygon. In the general case (Figure 3.27), using the
midpoint method and the standard parametric ratio, this method produces curves that are
piecewise elliptical arcs.

Given a control polygon, {Pg, P1, Py, P3}, we insert P! at the midpoint of P;P;. As
before, we begin by breaking this into two control polygons, {P§, P1,P1} and {P}, Py, P}},
and proceed as above. Here we have two elliptical arcs. The first is tangent to Pg and P},

and the second is tangent to P} and Pj.
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Figure 3.27: Piecewise Elliptical Curve
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Chapter 4

Three Dimensions

We will extend the method presented to refine a control polygon into a circle so that we may

refine control polyhedra into a sphere. To that end, we will lay groundwork for operations

and relations in three dimensions.

4.1 Preliminaries

4.1.1 Planes and Lines
Projecting a Point onto a Plane

Given a plane defined by a point, P, and a normal vector, @ !, consider a point, Q, and a
vector direction, ¥, in JR®. We calculate the projection of Q onto the plane in the direction

of the vector 7, by calculating the intersection of the line
Q—-1tv

and the plane, as in Figure 4.1.

In this case, we have that the vector ((Q — t¥) — P) must lie in the plane, and so

!We assume all normal vectors, 7, are unit vectors
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P

Figure 4.1: Projecting a Point onto a Plane

We have

. (P-Q)-a

-7
and the projected point of intersection R is equal to

P-Q) -7
R=q+E=Q)7,

Projecting a Vector onto a Plane

Given a plane defined by a point, P, and a normal vector, 7, and a vector, ¥, in IR3

(Figure 4.2). We calculate the projection of ¥ onto the plane by calculating the intersection
of the line

(P+7)—tn
and the plane.

This follows exactly the treatment of the above case, with Q replaced by P + ¥ and ¢
replaced with —7. We obtain

0 = [P+o+1i(-7)-P]-7
[T+ t(-n)] -7

= v-n-—t
assuming that 77 is a unit vector. Therefore,

t=7-1
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Figure 4.2: Projecting a Vector onto a Plane

and the vector projection ¥, is equal to

—

=7 [5-71] 7

Closest Point on a Plane to a Point

Given a plane, P, defined by the point-vector pair (P, #), we may find the closest point, R,
on this plane to a point, Q, by projecting Q onto P along normal vector 7. Using the same

method as above, we have:

—~——

)

= Q+[(P-Q)-7A]7n

The Closest Point on a Line to a Point
Given a line, PoPy, and a point, P, we may find the closest point, P, , on PoP; to P.

(P1 = Pg) - (P - Py)
|P1—Po||P—-Po]

Pp =Po+ (P1 — Po)

The Intersection of Two Planes

Two non-parallel planes intersect in a line (Figure 4.3). Consider two such planes defined

by the point-and-vector pairs (Py, ;) and (Py, ;) respectively. We can uniquely specify
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I1: X Ie

I'igure 4.3: Interscction of Two Planes

the intersection line by exhibiting both its direction and a point on the line. These can be

determined by the following process:

e Determine the direction vector for the line of intersection. This vector is clearly

ﬁl X ﬁg.
e Let ¢ be the projection of 7} onto the plane defined by P, and 7.
e Let R be the projection of P, onto the plane defined by P; and #; in the direction 7.

Then the line is specified by the pair (R, iy X ii3).

The Intersection of Three Planes

The intersection of three planes is a point provided:
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e No two of the three are parallel
¢ There does not exist a fourth plane to which all three are perpendicular

If we consider three planes, (P1,7), (P2, #,), and (Ps,i3), then the calculation of the

intersection point proceeds as follows:

¢ By the above procedure find the equation of a line that is the intersection of the planes
(P1,71) and (P, 7). Let Q be a point on this line and ¥ be the vector direction of

the line.

e Project the point Q along the direction # onto the plane (P3,73). The resulting point

is the point of intersection of the three planes.

4.1.2 Subscripts

Given a cube, we will present a method to obtain piecewise planar approximations of the
inscribed sphere and, in the limit, the sphere itself. We will consider this cube and the
objects obtained from it to be control polyhedra for the sphere. When considering a vertex,
P, of the control polyhedron, it will be helpful to be able to refer to the features in jts
vicinity. We will refer to the edges incident to the vertex as eﬁj for 7 =0,1,...,n— 1 where
n is the valence of the vertex. ? The vertex at the other end of edge eﬁj is Pf"j. If we pick an
edge and label it eﬁo, then the next edge counter-clockwise around the vertex is eﬁl, then
eﬁQ, ete. Fach pair of consecutive edges emanating from a vertex define a plane. Given two
edges, eﬁj and eﬁjﬂ, we will label the plane defined by them Pi’fj+2' It will be useful to
consider a plane to be a point-vector pair. Given a plane, 'P,!fj, f’j,

and a normal vector, ﬁfj When an edge, ef,j, is replaced by a new Type E face, this face

it will have a point, C

will lie in the plane 73;‘:]*1. Using Doo’s method, a Type V face that replaces P# lies in the

plane labeled P*¥! where j is the valence of P¥.
4 1

4.1.3 Geometry of Spheres

It will be useful to consider relationships between spheres, circles, and various lines and

points. We give the following definitions.

*The subscript j is always modulo n
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Pencil of Planes

Consider a line, L, in IR3 along with the set of all planes in which L lies. We will call this
set of planes the pencil of planes of the line L.

Common Perpendicular

In IR3, consider a line, L, and two points, Py and Pj, such that neither point lies on
L. There are two points that lie on L that are the closest points on L to Py and P,
respectively. When these closest points coincide we will consider this to be one point and

call it the common perpendicular to Py and P; on L.

Normal Vector of a Sphere

Consider a point, C, on the surface of a sphere along with the normal vector to the sphere

at C, 7. Vector 7 is

(C-P,)
(C - Py

where P, is the center of the sphere. If the sphere is a unit sphere centered on the origin,

=

then we may say
i = (C)

We note that 7 will lie in any plane that CP, does.

Great Circle

If we intersect a sphere with a plane, P, that passes through the center of the sphere, P.,
we obtain a great circle. This is a circle that lies in P and has the same radius and center
as the sphere. Consequently, every point on the circle lies on the sphere. Consider a point,
C, on this great circle, and the normal vector to the sphere, 7, at this point. Since CP,
lies in P, 7@ does also. Consequently, @ is normal to the great circle at C. Consider the
diameter on which C lies. Every great circle formed by a plane from the pencil of planes
for this diameter will pass through C and the point on the surface of the sphere opposite
to C. Conversely, every great circle passing through a point on the surface of the sphere

lies in a plane from the pencil of planes of the diameter to that point.
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Angular Measurements

Consider a circle along with three points on the circle, Cg, Cy, and Ca. By the definition
of a radian, we may say that if the arc distance from Cgy to Cy, IC/OEII, is equal to the arc
distance ]cf?:z’ , then the angle between the radius to Cp and the radius to C; is equal
to the angle between the radius to C; and the radius to C;. We will call the arc distance

between two points on the circle the distance between them. Additionally, we may say

| - | v

The line segment CyC; is called the chord from Cg to C; and the distance ICOC1 ‘ is

called the chord distance to differentiate it from arc distance.

Spherical Coordinate System

It will be useful to establish a coordinate system for a sphere similar to that used on the
FEarth. There will be two diametrically opposed points called poles. The diameter to these
poles will be called the azis and the great circle perpendicular to the axis will be called the
equator. We may fully define a coordinate system by specifying a point on the surface of
the sphere to be a pole, or by specifying a great circle to be the equator. Circles formed by
the intersection of the sphere with planes paralle] to the plane of the equator will be called
latitude lines. Excluding the equator, latitude lines are not great circles. We may measure
a latitude line’s distance from the equator or from one of the poles. Consider a point, C,
on the surface of the sphere from which segments of two great circles, & and €, emanate.
If we set C as the pole we may determine the points, Cq and Cj, at which € and & will
intersect the equator. We will call the arc distance between Cg and C; the hour angle
between € and €; and designate it Z; (C). This is the same angle we would find between

the normal vectors of the planes in which €; and e7 lie.

Spherical Triangles

We may define a spherical triangle by three points, Co, Cy, and Cg, on the surface of a

sphere, such that

1. Vectors (C; — P), ¢ = 0,1,2 are linearly independent. This implies that no pair is

diametrically opposed and they do not coincide.
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2.0< L (Ci<

A spherical triangle has edges, CEEI, CTEQ, and C;ao, that are arcs of great circles. We
will let ¢; = lC,-_;E),-_H)’, that is, ¢; is the length of the side opposite C;. Since the lengths
of these edges are angles, spherical triangles have six angular components: three arc angles

and three hour angles. For any of these spherical triangles we may say the following
T < Ly (Co)+ Lp(Cy) + Ly (C.) (4.1)

cos (¢;) — [cos (€i41) cos (ciya)]
sin (ci41)sin (ciy0)

COos Zh (C,) = (4.2)

We will be interested in spherical triangles where Z,, (Ci) < 7. To prove this true, we can
show that cos Z; (C;) > 0. Consider equation 4.2. First we will look at the denominator,
sin (¢i1)sin(ci2). From requirement 2 we may say 0 < ¢; < 7. Therefore, we may say
0 <'sin(c;) <1 and conclude that the denominator is positive. Considering the numerator,

we may conclude

cos (¢;) > cos (¢;41) cos (Ciyz) € cos Ly (Cy) > 0 (4.3)

Geodesic Arcs

Consider two differing points on the surface of a sphere, Cy and C;. The shortest arc
between these points is called the geodesic. Suppose that Cy and C; are diametrically
opposed. Then there are infinitely many arcs of the same length between them. We may
find one of these geodesics, 0361, by choosing a plane from the pencil of planes of the
diameter from Cy to Cy. Intersect this plane with the sphere and choose one of it halves
to be the geodesic. Otherwise, define a plane, P., using points Cp, Ci, and the center of
the sphere. Then intersect P. with the sphere. The resulting great circle passes through
Co and C; and is divided into two parts by them. The smaller of these two parts is the
geodesic from Cg to C;. As noted in the definition Great Circles, the vectors normal to

the sphere at points Cq and C; lie in P, and are normal to this great circle.

Projecting a Point onto a Sphere

We may define a line, P.R, where P, is the center of a sphere and R is some different point.

If we intersect P R with the sphere we will obtain a point of intersection R. We will say
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that R is the projection of R onto the sphere. We note that every point on P.R projects
to R.

Figure 4.4: Line Projected onto Sphere

Projecting a Line onto a Sphere

We may define a line, L, and a sphere such that L does not pass through the center of the
sphere, P.. Using L and P, we may define a plane, P,. If we intersect P. with the sphere,
we will obtain a great circle, L. We will say that L is the projection of L onto the sphere.
We note that any line in the plane P, will project to L. Consider a segment of L, e, with

end points Pg and Py, neither at infinity (Figure 4.4). If we project points Py and P, onto
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the sphere, we will obtain projected points Py and P;. The two projected points will lie
on L and divide it into two arcs. We will call the minor arc the projection of e onto the
sphere and label it €. From the definition Projecting a Point onto a Sphere we note
that a line from any point on the line PoP, to any point on the line P; P, will project to
€. Projected line € is the geodesic from Py to Py on the surface of the sphere. Since the
geodesic lies in the plane P, and is an arc of L, its length is the arc distance from Pg to P,

measured along L.

4.2 Doo’s Algorithm cannot be Extended to Create Spheres

We were successful in our attempt to modify Chaikin’s algorithm so that it could generate
rational curves. However, we will show that it is impossible to directly extend Doo’s algo-
rithm so that it will produce a sphere when applied to a cube. Consider a cube with side
length 2 and vertices (£1,+1,+1). Each of the cube’s faces lies in a plane tangent to the
inscribed unit sphere centered on the origin. As the cube is refined, we would like all new
faces to continue to be tangent to the unit sphere. First we will need to choose a ratio so
that the resulting Type E faces are tangent to the unit sphere. Because of the symmetry
of the cube, a level £k = 1 Type E face is parallel to the edge it replaces and has an alpha
angle of 37” to the faces adjacent to this edge. With an appropriate ratio, the new Type E
faces will be tangent to the unit sphere at their centroids. Given this, we may define the
planes in which the new Type E faces lie.

For instance, consider vertices (Figure 4.7)

Py = (1,1,1)
Poo = (-1,1,1)
Po: = (1,-1,1)
Po, = (1,1,-1)

Point Py has three adjacent faces with centroids

@
o
o

It

(1,0,0)
(0,1,0)
Cop = (0,0,1)

Q
o
It
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Figure 4.5: Vertex Pg of the Cube

these faces have normal vectors

foo = (1,0,0)
o1 = (0,1,0)
7_1‘012 = (0,0, 1)

and they lie in planes tangent to the unit sphere

Poo = (Copo,7o0)
Por = (Co1,701)
Po2 = (Coy2,Toz)
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P . at the intersection

( of four faces

Normal vector
from center

of the Type E face.
The center is at a
distance of one
from the Origin

Iigure 4.6: Type E Face Tangent to the Unit Sphere

Each edge will be replaced by a Type E face that lies in a plane that is tangent to the
unit sphere such that the centroid of these new faces will touch the sphere (Figure 4.6). For

example, edge PoPgg will be replaced by a face tangent to the unit sphere at its centroid

2 V2
- (125)

and it will lie in a plane with normal vector

8a- (02.2)

n = —_—
0,0 ’
' 2 2

This gives the plane
7)(},0 - (C(l),Ovﬁ(l),())

Similarly the other two edges adjacent to Py, PoPg,; and PqPy are replaced by faces that

lie in planes
1 1 =1
7)0,1 = (Co,lv ”0,1)
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73(},2 = (CclJ,zy ﬁ(l),z)
where
2 2
C(l) - _‘/:, 0, £
' 2 2
2 2
Ccl) . = i, I_, 0
’ 27 2

are the centroids of the faces and

are the normal vectors of the planes.

Using Doo’s method, each valence-three vertex of the cube is replaced by three new

points. These new points lie in the planes of the faces adjacent to the vertex and are a

combination of the vertex and the centroid of the face using an appropriate weight tq. For

Py these three new face points are

Additionally, these new points lie at

(1 -to)Po+1Cop
(1-to)Po+1tCop
(1 -1t)Po+tCo,

the intersection of four faces: one original face, two of

the new Type E faces, and a new Type V face. Using the method presented in section 4.1.1,

we may calculate the point of intersection using any three of these planes (Figure 4.7). For

instance, Pg, is at the intersection of planes P, Pj;, and Pj,. Using this to calculate

P(l)’o, we may discover the appropriate weight to use. First, we will calculate the line of

intersection, Lj | (Q, 7), between Py and P} ;. Lg, is defined by a point, Q, that lies on

the line and a direction vector, ¥. The direction vector, ¥, is simply the cross product of

the normal vectors of Py and P§

0l

— =1
noyg X 720’1

(1,0,0)x<

2 2
—‘f,o,
2

o[

)



Po.1

Figure 4.7: Cube after First Refinement Using Rational Doo’s

A point, Q, on this line may be defined by projecting a point on P g, Co 0, onto ,P(},l using

any vector that lies in Poo. We may find a vector, 4, that lies in Pgo by projecting 7'1'(1)'1

onto Py
v-’; = T—L'(I)’l — (ﬁflJ,l . 770’0) 7—7:010
2 2 2 2
(20 f)- (202 nno)ns

V2 V2 V2
- {208 (Daon
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Then we will project Cg g onto 733'1 along v,

1 =1
<Co,1 - C0,0> "oy

Q = Coo+ = Up
Up * 7g,1
((£,0.8) - (1,0,0) - (£,0, ) / 3
= (1,0,0)+ 2 <Of0,3§> <)§03§;> : <0,0,—2—>

_ 2
= (1,0,0)+1 = <0,0,§>

(1,0,0)+ (0,0,v2 - 1)
(1,0,\6- 1)

L, = <(1,0,\/§— 1) <0?0>>

Now, we may find the point, Pé,o, that is the intersection of planes Py g, 736,1, and P}, by

[

i

which gives

projecting point Q onto 77(},2 along v

N <C(11,2 - Q> '77(1),217

Poo 57
_ (1,0,f2~1)+
((0.) - a8, 1
(0 2.0y (22,3 T
- (1,0,\/5—1)+1_;¥<0,——2,0>
2

2
= (1,0,f—1)+<0,\/§—1,o>
= (1,\@—1,\/5—1)

We may now solve for the weight, to, used to obtain this point
Pio = (1—-t)Po+1tCop
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(1.v2-1, VZ-1) = (1-1)(1,1,1)+1(1,0,0)
(1, \/5—1\/_—1) = (1,1,1) = to(1,1,1) + £ (1,0,0)
(L.v2 2-1,v2-1) = (L,1,1)+14][(1,0,0) - (1,1,1)]
(0.v2-2,v2-2) = t(0,-1,-1)
(0,2-v2,2- V2 ) = 1(0,1,1)

= 2-v72

Using this value for to we solve for P, and P(13,2 getting

Po, = (VZ-1,1,v2-1)
P!, (V2-1,v2-1,1)

]

These are the vertices of the new Type V face that replaces vertex Py. Calculating this
face’s centroid we get
(Pcl),o + Py + Pcl),z)
3
(F+vi-1, 8 +va-1,+ V1)
3

1
Cos =

1
CO,3 -

However, the point does not lic on the unit sphere; it is &~ 1.0556 from the origin
(Figure 4.8). Using the method described in section 4.1.1, we can show that this is the
closest point to the origin on the plane in which this face lies. Of course, if a different
weight were chosen so that this Type V face were on the unit sphere, the adjacent Type
E faces would be inside of the unit sphere. It appears, then, that there is no weighting

function that can be used to obtain a sphere from a cube using Doo’s method.

4.3 Generating a Sphere from a Cube

4.3.1 General Idea

In two dimensions we started with a square where each of its edges was tangent to the
inscribed circle. The corner vertices were cut off and replaced with edge lines that were
also tangent to the circle. In three dimensions we start with a cube where each of its face

planes is tangent to the inscribed sphere.



T

Figure 4.8: Type V Face not on Sphere

We cut off each edge line and replace it with a new face plane that is tangent to the
sphere and will refer to this as edge-beveling. In this way, we iteratively produce polyhedra
that have a structure similar to the cube, that is, each face lies in a plane that is tangent
to the sphere, and each edge and vertex lies at the intersection of adjacent tangent planes.
Beginning with the six-faced cube (Iigure 4.9), after one iteration the number of faces grows

to eighteen.
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Cube One refinement

Figure 4.9: Results of First Refinement Step

Edge removed by
cutting—plane
tangent to sphere

Fligure 4.10: Cube’s Edge Removed by Cutting Plane
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Figure 4.11: Intersection of Three New Type E Faces
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We restrict the following discussion to the cube with vertices (£1,+£1,41) and its in-
scribed unit sphere. Consider two adjacent faces of the cube, Py and P1. These faces are
tangent to the sphere at points Cg and Cj, respectively. The geodesic connecting these
points is an arc of the great circle at the intersection of the sphere and the plane defined
by Co, C;, and the origin. To cut off the edge between these faces, we construct a plane,
P, parallel to this edge and tangent to the sphere at the midpoint of this geodesic (Fig-
ure 4.10). Using P as a cutting plane, we remove the edge, replacing it with a face that
lies in P. After we have defined a cutting plane for each edge of the cube, all planes are
clipped against adjacent planes. The new faces have edges that lie in the lines of intersection
between adjacent planes. (Figure 4.11).

Since our construction is symmetric, we need only consider an octant of the cube. We
will describe its refinement in the following. The faces of the figures are tangent to the

sphere at the dots.

Figure 4.12: Level k£ = 1 Faces
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Level £ = 2 Faces

Figure 4.13

58



N
.
L

X
R

Figure 4.14: Level & = 3 Faces
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Level k = 4 Faces

Figure 4.15
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4.3.2 A Tessellation of the Sphere

As introduced in section 4.3.1, we will present an algorithm that will iteratively produce
polyhedra that are piecewise planar approximations of an inscribed sphere. We will define
a set of tessellations of the surface of the sphere and show that there is a correspondence
between each of these polyhedra and one of these tessellations, such that, from one we may
find the other.

Given one of these polyhedra, a vertex of the tessellation will be a projection of a vertex
of this polyhedron and an edge of the tessellation will be the projection of an edge of this
polyhedron, thus, each tile of the tessellation will correspond to a face of the polyhedron.
Consequently, the valence of a polyhedron’s vertex is the same as the valence of the cor-
responding tessellation vertex. Each tile will contain the point at which the corresponding
face is tangent to the sphere; we will call this point the data point. Since we begin with
the cube, our tessellations will never have fewer than six data points. We will show that an
edge of a tile will be an arc of a great circle such that every point on the arc is equidistant
from the data points in the tiles adjacent to the edge. We will call these arcs ares of equal
influence. Since this arc is equidistant from adjacent data points, it intersects the geodesic
between these data points at the geodesic’s midpoint, and we will show that the hour angles
at this intersection are Z- The vertices of the tessellation will fall at the intersection of arcs
of equal influence and be called points of equal influence. All points on the surface of the
sphere within a tile will be closer to the data point of that tile than to any other data point.
Thus, we will call the region within a tile the region of influence of that tile’s data point,

To summarize, our set of tessellations have the following properties

1. Each projected edge and projected vertex is equidistant from the data points adjacent

to 1t.

2. Any point on the surface of the sphere that lies within one of the tiles is closer to the

data point of that tile than it is to any of the other data points.

3. The intersection of a geodesic between adjacent data points with the tessellation edge
separating these data points falls at the midpoint of the geodesic and intersects at

. s
hour angles of 5 -
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Given the Polyhedron, find the Tessellation

Figure 4.16: Intersection of Two Tangent Planes

Although we will only deal with tessellations that contain six or more data points, we
will describe them beginning with fewer data points. First, we will show that the line of
intersection between two planes tangent to a sphere is equidistant from the tangent points
of these planes. Consider two differing and non-diametrically-opposed points, Cy and C;,
on the surface of a sphere and the planes tangent at these points, Py and Py (Figure 4.16).
As described in The Intersection of Two Planes of section 4.1.1, these planes will
intersect at a line that we will label L. Now add the plane, P,, defined by points Co, Cy,

and the center of the sphere, P.. These three planes, Py, Py, and P,, will intersect at a
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Figure 4.17: Cross-section of the Sphere

point that we will label P,. If we intersect P, with each of the following: Py, Py, and
the sphere, we will have the IR? figure 4.17. Using some basic trigonometry, we see that
point P, on the line of intersection, L, is equidistant from points Co and C;. Referring
again to The Intersection of Two Planes in section 4.1.1, we know that the direction
of L is determined by the cross product of the normals at Cy and Ci. As noted in the
definition Great Circles from section 4.1.3 these normals lie in the plane P.. Therefore,
L is perpendicular to P, and point P, is the common perpendicular on L to Co and C;.
Now, consider some other point on L, P,. We Mmay construct two triangles designated by

their vertices, {Ps, P, Co} and {P,,P,, C;}. We know that these are right triangles since
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L is perpendicular to both CoP, and C,P, . Therefore, since

oo | - ooy

we may say

| CoP,

- ] C,P,

So, every point on L is equidistant from Cy and Cj.

Figure 4.18: Plane of Equidistance

Now we will define a plane, P, that we will show is equidistant from data points Cy
and C;. The plane P; is defined by the line of intersection, L, and the center of the

sphere, P, (Figure 4.18). Since L is perpendicular to P, P, is also. The line of intersection

G-t



between P, and P; is P.P,. Let £(Cq, P, C;) be the angle between the radii P.Cy and
P.C;. If we consider the line P.P, in Figure 4.17, we see that it bisects Z(Co, P, Cy).
Consequently, the intersection of P.P, with CoCy, C,, is the midpoint of CoCy, and P.P,

is perpendicular to CqCj. Therefore, P, is the closest point on L to C,,, and C,.P, is
perpendicular to L.

Since C,, is the common perpendicular to Cy and C; on m, it is the common
perpendicular to these on the plane P;. Now consider some other point on P;, P,.. Again
we may form two right triangles, {P,, C,,, Co} and {P,,C,,, C1}, and show that any point
on the plane P; is equidistant from points Cg and C;. Thus P, separates IR® into two parts,
one in which every point is closer to Cg than to C; and one in which every point is closer
to C; than to C,.

In the plane of equidistance, P;, we may find the great circle that is equidistant from
data points Cg and C;. First, we project L onto the sphere and obtain L. Since L lies in
the plane Py, every point on L is equidistant from points Cg and C;. Consequently, any
point on the sphere between L and Cy is closer to Cp than to Cj. Thus, L separates the
sphere into two tiles, one containing Cqy and all points on the sphere closer to it than to
C; and one containing C; and all points closer to it than to Co. Consider the geodesic
from Cy to Cy, CEEI. Since the midpoint of C/obl, Cy/2, is equidistant from Cg and C;,
it must lie in the plane of equidistance, P;. Since Cy/, is on the surface of the sphere, it
must lie on L. Therefore, Cy /7 lies at the intersection of L and C}El. Suppose we establish
a coordinate system where Cy/, is a pole and pass a latitude line, 1, through Cy and C;.
Consider the intersection points of L and 1 that we will label C, and Cy. Since every point

on L is equidistant from points Cg and C;, we may say

G| = |ciC,
| = |l

Additionally, since very point on lis equidistant from C,;, we may say

]CJ;CO} = |cl//;cl{ - ICJ;ca

= |Cl/2Cb|
Therefore, we may say

iCEEa = ‘C/Oab! = [C:Eb|

=|ciC.
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and conclude that the hour angles at the intersection of L and CoC; are 7+ Therefore,

we have a trivial tessellation that meets the three requirements above, although clearly we
cannot find an equivalent polyhedron that will enclose the sphere.

To produce a more complex tessellation, let us consider three points, C;, C; 1, and C; 2,
on the surface of a sphere that satisfy the requirements for spherical triangles as defined in
section 4.1.3. Planes tangent at these points are P; o, P; 1, and P; 2. We will label the lines

of intersection between these planes
Lij = Pij1 0 Pijye

These three planes will intersect at the point P;. Since every point on the line of intersection,
L; ;, is equidistant from points C; ;41 and C; j42, we may say that P; is equidistant from
points C; o, C; 1, and C; . We may project the lines of intersection onto the sphere and
obtain great circles I/,,-:J, ]'./,,',\1, and I:\g Consider the projection of P, P;. Since P; lies on
L;;, it will project onto f,\] So we may say that P; lies at an intersection of I:',\o, IT;,
and I:\g Since these great circles intersect at P; they belong to the pencil of planes of the
diameter through f’i, P,P.. Recall that projected line ]:\J is equidistant from points C; ;41
and C; ;4,. However, I/M\J is equidistant from C; ;, C; 11, and C; ;42 only at projected point
P; and the point diametrically opposed to P;. Any other point on I:\J is either closer to or
farther from C;; than it is to C; ;41 or C; ;42. We will define a segment of I/J,\], €, such
that any point on €;; is not closer to C;; than it is to either C; ;41 or C; 4. Segments
€0, €1, and €; 5 separate the sphere into three tiles such that any point within the tile
containing data point C;; is closer to it than it is to either of the other two data points.
The valence-three vertices of this tessellation, P; and the point diametrically opposed to
it, are equidistant from data points C;o, C;1, and C;q. Again, we have a tessellation
that meets the three requirements above, but still we cannot find an equivalent polyhedron.
Without considering the minimum number of data points needed to produce an enclosing

polyhedron, we note that the six that coincide with the faces of a cube are sufficient.

Given the Tessellation find the Polyhedron

Suppose we have an edge, €, from a tessellation that corresponds to an enclosing polyhedron.
Additionally, we have the end points of &, Py and Py, along with the adjacent data points,

Co and Cy, and the center of the sphere, P.. As noted in the definition Projecting a Line
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onto a Sphere in section 4.1.3, a line from any point on PoP, to any point on P{P, will
project to €. However, given tangent points Cg and C;, we may recover the unique points,
Py and Py, and the line segment, e, that lie at the intersection of the planes tangent to the

sphere at Cg and C;. First define a plane, Py

Py = (Co,iio)
z — {Co)
[{Co)l

Next, define two vectors,

i = (Po-P.)
’Ul - <P1 - Pc>
Point Py is the projection of P, onto P along ¥p, Py is the projection of f’l onto Py along

77 and e is the line segment between Py, and P;.

Latitude Lines and Spherical Triangles

It will be useful to consider two relationships between a valence-three tessellation vertex,

P,-, and its adjacent data points, Ci,o, Cm, and Ci'g.

1. Latitude Line of a Tessellation Vertex

As we have shown

6 = [P = e

Establishing a coordinate system with P; as a pole, the intersection of the sphere
with the plane defined by C;g, C; i, and C; is a latitude line, 1;. We will call I; the
latitude line of P;. Every point on l; is equidistant from P;. We will say that a point
on the surface of the sphere that lies in the region between P; and 1; is inside of I,
while points in the other region of the sphere are outside of I; (Figure 4.19). Consider
the axis to P;. The point diametrically opposed to P; is also equidistant from every
point on 1;. We note that this axis is normal to the plane in which I; lies and intersects

the circle defined by 1; at its center.

Suppose we had only points C;g, C;1, and C; 3. We could find 15,- and the point
diametrically opposed to it as follows. First, intersect the plane defined by C; o, C;,
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Figure 4.19: Projected Point with Projected Lines

and C; with the sphere to obtain l;. Next, find the line that is normal to this plane
and passes through the center of 1;. Now, intersect this line with the sphere and obtain

P; and the point diametrically opposed to it.

. Spherical Triangle of a Tessellation Vertex

We will call the spherical triangle formed by C;g, C; 1, and C; 2 the triangle of the
tessellation vertex P; and label it A;. Given a tessellation vertex, 15,-, and its triangle,
A\;, we may classify them by the location of P;. If P; lies strictly within A;, we will
call both this tessellation vertex and its triangle Type I for inside. If P; lies outside
of A\; or falls on an edge of A;, we will call these Type O for outside.
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Latitude Line of a Tessellation Vertex

Considering the latitude line, 1;, of a valence-three tessellation vertex, 15;, we will show the

following
1. There is no data point within I;.
2. There are exactly three data points on ;.
3. No data point outside of I; aflects P;.

We will consider the tessellation of the sphere in the vicinity of P; and how this tessel-
lation would be affected if we were to insert another data point, C, on the surface of the
sphere differing from C; o, C;, and C; ,.

If C were to be inside of I;, then P; would be closer to C than to Cio, Ciy,0or C; 2 and
strictly within C’s region of influence. As we have shown, there could not be a tessellation
vertex at P; because it must be cquidistant {from the adjacent data points, at a point of
equal influence.

Suppose C were to lie on I; between C; ; and C; j+1. Clearly, C would be closer to the
arc of equal influence between C;; and C; ;41 than they, and this arc could no longer be
part of the tessellation. This arc of equal influence would be replaced by two new ones, one
between C and C;; and one between C and C; ;1. We will show that these two new arcs
pass through P;, therefore increasing its valence by one.

Suppose C and C;; are opposite from one another on l;. Then the geodesic C/C\;J
would pass through P;. Since C and C;; areon l;, P; would be at the midpoint of C/C\,-,j.
Therefore, the arc of equal influence between C and C; j would pass through P;. In the case
where C/(__‘J\i,j does not pass through P;, we will consider the spherical triangle {f’,-, C,C;,}.
Since C and C; ; lie on I;, we may say that this triangle is isosceles since for sides 13,/\0 and

pici,j

P;C;,;

P,c‘ =

As shown, the arc of equal influence between these points intersects C/(-]\,-,j at an hour angle
of Z. Therefore, this arc of equal influence passes through P; (Figure 4.20).
Likewise, the arc of equal influence between C and C; j+1 must pass through 13; also.

Therefore, there are now two arcs of equal influence passing through P; that have replaced
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0ld edge (dashed line)
replaced by two
new edges

Figure 4.20: Data Point C on Latitude Line ;

one of the originals, increasing the valence by one. We may conclude, then, that if C were
to lie on 1;, P; can no longer be valence three.
Finally, suppose C were outside of 1;. Then, C would be too far from P; to have an

influence on it since a vertex of the tessellation is equidistant from adjacent data points.

Spherical Triangle of a Tessellation Vertex

Now, consider the spherical triangle of a valence-three tessellation vertex, P;. We will show

that if all hour angles of A\; are less than or equal to %, we may conclude that P, and A
are Type 1.

For tesscllation vertex P; we will require that points C;o, C; 1, and C;y lie within
the same hemisphere as P;. As shown, the tessellation edges emanating from P; intersect
geodesic sides of A; at the midpoints of these sides. However, in general, we cannot ensure

that P; is Type I, that is, it lies within A; (Figure 4.21).
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Figure 4.21: Vertex not within the Spherical Triangle

To guarantee that P; will be Type I, we must set certain restrictions on the shape of
JAYS

As shown in Figure 4.22, consider an edge of A\;, geodesic C,-,j/C\,-,Hg, that is a segment of
a projected line, L. The tessellation edge equidistant between C;; and C; j;2 is a segment
of projected line L:j\+1, and the intersection of L,'/’j\+1 with Ci,je\i,j+2 is the midpoint of

Ci'j/c\i,j+2, C}.j+1' We know that P; must lie on L,-/,j:l and that

'Pi/d',j = ‘Pién\‘,m‘ = le‘(/?:mI

To meet this requirement and ensure that P; lies within A;, we must restrict the region in
which C; ;41 may lie. We may say that C; ;4 does not lie on L. If it were to lie on f,, the
point equidistant from C; ;, C; j11, and C; ;42 would be one of the poles defined by making
L the equator, and we have defined these points to be within the same hemisphere as P;.

To further define the permissible region, we will establish a coordinate system with C}j+1
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Figure 4.22: One Edge of the Spherical Triangle

as a pole and create a latitude line, 1, through C;; and C; ;43. Consider the position of
Ci j+1. If it were to lie on 1 then C}’ﬂ_l would be equidistant from C; ;, C; j+1, and C; j42,
so P; would coincide with C!;11- We note that when P; and C! ;41 coincide, 1 and J; also
coincide. Now suppose C; ;41 were to lie within 1. It would have to lie on an arc from
Czl',j+1 to some point, C, that lies on 1. As we have noted, if C; ;41 lies on 1, then I and ;
coincide. However, as the position of C; ;41 is moved toward C} ., along Cé;{\ﬁ_l, 1 and
1; will no longer coincide. Latitude line 1; will tilt so that less of it lies on the same side
of L as C; j+1 and more of it lies on the side of L opposite C; j+1. As noted in Latitude
Lines and Spherical Triangles, the diameter line through P, is normal to the plane of I;

and passes through its center. Therefore. we may conclude that as C; ;4 is moved toward
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C!.4; from C, P; is moved away from C};,, into the area on the opposite side of L from
Ci j+1, outside of A;. In either case, A; would be Type O.

Therefore, C; ;411 must lie outside of 1 for A; to be Type I. Thus, if we have a valence
three projected vertex such that each adjacent data point, Cij, J = 0,1,2, meets this

requirement, then we may conclude that A; is Type I.

Figure 4.23: C; ;41 on 1

We will be interested in a subset of all Type I triangles, those that have hour angles that
are not greater than 7, which we will call acute triangles. To show that acute triangles are
Type I, we will establish a coordinate system with the midpoint of the geodesic C;,ja'jw,

Cl},41, as a pole and create a latitude line, 1, through Ci; and C; ;o (Figure 4.22). We
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must show that C; ;11 does not lie on or within 1 to show that A, is Type I. Suppose C; ;41
were to lie on 1 (Figure 4.23). Then we may say

}Ci,jc},j-{-ll = 'Ci,j+1cz1,j+1‘ = ICi,j+2Czl,j+1l
This makes triangles {Ci,]-, Czl,j+1’ Ci,]‘H} and {C,-,]-+2, C},j.{_l, Ci,j+1} isosceles triangles.

Therefore, for these isosceles triangles, we may say hour angles

A = A
B = B

Additionally, since A, is a spherical triangle, we may say
A+B+A+B>r

Clearly, A + B must be greater than 7 if C; ;41 is to lie on 1. Suppose C, ;41 were to lie
within 1. It must lie on an arc from C},]-H to a point, C, that lies on 1. If C, ;j+1 coincides
with C, we have seen that its hour angle is greater than 7. As the position of C; ;41 is
moved along this arc toward Cj,,;, the hour angles at Ci; and C; ;4 decrease. These
hour angles approach zero as C, ;41 approaches C},Hl' Since the sum of the three hour
angles must be greater than 7, the hour angle at Ci j+1 must increase. Therefore, given a
valence three projected vertex and its associated triangle, it is sufficient to show that all
hour angles are less than or equal to 7 to show they are Type I. We will define a subset of

the tessellations described above that we will call acute tessellations. For each vertex of an

acute tessellation we may say

1. The vertex is valence three.

2. The triangle of the vertex has hour angles less than or equal to 7, that is, it is an

acute triangle.

3. Therefore, the vertex and its triangle are Type I.

Acute Tessellations

When we have an acute tessellation we can show that data points other than the three

adjacent to a tessellation vertex do not affect this vertex. Referring to Figure 4.24, consider
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Figure 4.24: I; and 1

how the position of f’i and 1; depends on the position of C; ;1. Let us assume that C, ;41
lies to the left of Ciyj/c\i’j+2. Keeping C; ;41 within the bounds established for a Type I
projected vertex, we may place C; ;41 any place on l; (dotted portion) without affecting the
position of P;. Suppose we were to move C;,j+1 farther to the left of C},j+1 than the current
1;. Then P; would move to the left, away from Czl,j+1 along L:j:l- Latitude l; would also
move, so that the solid portion would protrude less into the area to the right of C,',J-/C\,-,Hz.
Conversely, if we move C; ;41 closer to C},j+1’ P; would also move closer to C},j+1’ and I;
would shift so that the solid portion would protrude more deeply into the area to the right
of C,"J-/C\,-,J'H. Continuing to move C; ;4 toward C},jﬂ, it would eventually approach 1 but

cannot reach it if this is to remain Type I. As C; ;4 came closer and closer to 1, 1; would

~1]

(1]



come closer and closer to coinciding with 1. However, since C; ;41 can never reach 1, the

portion of 1; to the right of C,-,ja,j_” would always fall within 1.

Figure 4.25: Neighboring Spherical Triangle

Now, consider the neighboring tessellation vertex to P; along the tessellation’s projected
edge e;;71, Pin (Figure 4.25). We may assume 15,-+1 is valence three since this is an acute
tessellation. Data points adjacent to 15,~+1 are the shared points C;; and Ci j+2 and the
non-shared point Ciyq,541. We know that if Ciyq ;41 is to affect P;, then Cit1,j+1 must
fall on or within l;. However, if ;41 is Type I, then Cit1,741 must lie outside of 1. So, we
may conclude that if we have an acute tessellation and consider two neighboring tessellation
vertices, the position of the non-shared data point adjacent to one vertex does not affect

the other vertex. From this we may conclude that there is an edge of length greater than
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zero between the tessellation’s projected vertices, and the valence of one of these projected
vertices is unaffected by the position of the non-shared data point of the other.

As shown above, we may find the unique line segment, e; j41, with endpoints P; and
P;11 that corresponds to the tessellation edge e ;1. We may then conclude that e; ;4 has

length greater than zero.

Figure 4.26: New Data Points

4.3.3 The Mathematics of Edge-Beveling

As stated in section 4.3.1, new polyhedra are produced by edge-beveling. Consider a vertex,
P%, of a level k polyhedron that we will assume is valence three. It has three faces adjacent
to it that lie in planes, Pffo, ’Pffl, and 73,»1‘:2. Plane Pfj is tangent to the sphere at point Cf’j.

Edges emanating from P¥ lie in the lines of intersection between adjacent planes. Edge efj

7



Figure 4.27: New Tessellation

will lie in line Lf"]- where
L* Pk Pk
Y B | n 1,7+2

Edges eﬁj, J =0,1,2, will be replaced by faces that lie in planes Pf;fl. These new level
k + 1 planes are tangent to the inscribed sphere at the midpoint of the geodesics from Cf‘,j

k k T~k - 3
o Ciivrs CiiCiir 7=0,1,2.

Triangle Subdivision

Now, consider the corresponding tessellation to this polyhedron. When we edge-bevel the
polyhedron by inserting new tangent points at the midpoints of CﬁjCﬁj+l, J=0,1,2, the
corresponding tessellation will also have three new data points that coincide with these
tangent points. These new data points will lie at the midpoints of the sides of triangle A¥.
When referring to the tessellation, we will call the Process of inserting new data points at
the midpoints of existing triangle sides triangle subdivision. We will break existing triangles,
A¥, into four smaller triangles, AX+1 Af‘:gl, Af’}”, and Af’”{l, (see Figure 4.26) and produce

new tessellations of the sphere with projected vertices, Pf“, 15,’?’0“, Isf,”{l, and 15,’-“;1, that

%7 modulo three
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subdivision k times. We will refer to the triangles A**1 as the children of Ak, Likewise,

1.1]'
fjl, are the children of P¥. Given a level k acute

tessellation, we would like to be able to state that the level k + 1 tessellation is acute also.

projected vertices of the tessellation, P

Figure 4.28: Projection of the Cube onto the Sphere

We begin with the cube whose faces are tangent to the inscribed sphere at their centroids
(Figure 4.28). Therefore, triangles of the tessellation that corresponds to the cube are
octants of the sphere. Clearly, as polyhedra are produced by edge-beveling, we will never
have corresponding tessellations with triangles larger than an octant. An octant triangle is
acute so we may say that it is Type I, and the tessellation that corresponds to the cube

is an acute tessellation. We will show that when the octants are repeatedly subdivided,



the resulting tessellations are also acute tessellations. From this we may conclude that the
corresponding polyhedra are valence three. To this end we will show that, the child triangles

obtained by applying triangle subdivision to an octant are acute.

Pigure 4.29: Simplified Labeling

First, we will introduce a simplified labeling for an octant of the sphere (Figure 4.29).
Here, upper case letters represent hour angles and lower case represent arc angles. Beginning

with the octant, we may say

7—;- = A=B=C=a=b=c¢
T a_b_c
4 2 2 2
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Rearranging equation 4.2 we may solve for a’

cosa’ cos cosc+sinbsinccosA
osa’ = — - —sin —
2 2 2 2
_ 1
2
Similarty
1 / /
3 =cosb’ = cosc

Solving for cos A’ we get

, cosa’ — cosb’cosc! 1
cos A’ = I ==
sin b’sin ¢ 3

So we may say
~1.230959 = A'=B' =’

We find cos By to be

e P c /
cosBy = oS 3 — €Os 5 cosa _ V3
sin%sina’ 3

Which leads to
~ 955317 = B0:C0:A1:CI‘—"B2:A2

After one subdivision, all hour angles are less than or equal to Z; the triangles are acute.
Therefore, we may conclude that the corresponding polyhedron is valence three and each
of the original vertices has been replaced by four new ones. That is, we started with the
eight vertices of the cube and now have twenty-four.

Now consider a triangle, A¥, chosen from among those obtained by applying triangle
subdivision to the octant and then to the resulting children for a total of £ subdivisions.

Labeling A¥ as above we may say

T > a,b,e>0
2
0 < cosa,cosb,cose < 1
T abc 0
2 7 a7
a b c
0 < cos §,cos §,COS§ <1
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We will assume that A¥ is an acute triangle, that is,

v

AB,C>0
< cosA,cosB,cosC < 1 (4.4)

o oA

and will show that the children of A are acute by showing that the cosines of their hour
angles are non-negative. Using inequality 4.3 and the assumed inequality 4.4, we may say

the following

cosa > cosbcosc (4.5)
cosb > cosacosc (4.6)
cosc > cosacosh
LS b c
cos a COS — COS —
- 2 2
a c
cosb’ > cos=cos=
- 2 2
o> s a
cosc COS — COS —
- 2 2

I'or cos A we may say the following

cosa — cosbcosc

cosA = - ;
sinbsinc
cosa’—cos%cos%
cosA = 5 ¢
sin 3 sin 5
So we may say
cosa’——cos%cos% cosa — cosbcosc
sin 122 sin £ - sinbsinc
2a ‘ 2b 2c
cosa’ — cos B cos & (2 cos 5—1)—(2cos 7—1) (2cos?§ —1)
b ¢ = . .
Sin 5 sin 5 (2 cos;—)sm %) (2 cos §sin §
2a 2b 2c 2b 2 c
cosa'—cos%cos% (2 cos 5—1)—<4cos 5 COs“ 5 — 2cos” Z —2cos 5—}—1)
in Rain € - boob Cgin €
sin 3 sin 3 4COS2Sln2COS2SIIl2
/ c (2cos2‘—2‘—1)—(40032%c0s2§—2cos2%——2(:052%-}-1)
cosa’ —cos—cos—~ = 5 .
2 2 4 cos 3 cos §
, c 2c052%+2c052%+20052%—2 4cosngcos2§
cosa — cos—cCos— = 5 . - i -
2 2 4cos§cos§ 4c085cos§
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, c cos2%+cos2%+coszg—l b
cosa’ —cos—cos— = 5 . — COS — COS —
2 2 2cos 3 cos 5 2 2
, c052%+c052%+cos2§—1
cosa’ = 5 .
2 cos 7 Cos 5
Similarly we have
, COSZ%+COSZ%+C082%—1
cosb’ = - =
2 cos 5 cos 5
, COSQ%—{-COS?%-*-COS?%—I
cosc =

a b
2 cos 5 cos 3

Now we will consider cos Bg

cos % — cos ¢ cosa’

sin % sin a’

cos Bg =

As noted in inequality 4.3, we can show that Bg < % by showing

b c ,
COsS— 2 COS—cosa
2 2
2a 2b 2¢c _
cos2 > cosf— cos® 5 4 cos b2+cos 5 1
2 2 2cos 3 cos §
2 2 b 2
COSE > cos® 5 + cos 5—:)—cos %—1
2cos§
2 b 28 2 2
2cos§ > cos §+cos—+cos———1
b a
cosQE > c052§+c032§—1
1+ cosb S l+cosa 1+ cosc
2 - 2 2
l+cosb > 1+4+cosa+1+cosc—2
14 cosb > cosa+cose

From inequality 4.6 we may say 1+ cosb > 1+ cosacosec.
So, if we can show 1 + cosacosc > cosa + cosc,

we may conclude 1+ cosb > cosa + cosc.

14 cosacosec > cosa+cosc

1

v

1

Vv

cosa + cosc (1l — cosa)

83

cosa -+ cosc — cosacosc



Since we have shown 0 < cosa < 1 and 0 < cosc < 1, we may say

1> cosa
Therefore, we may conclude

COs —
cos Bg

Bo

Similarly, we may say

0o |

Turning to cos A’, we may say

+ cosc (1l —cosa)

c /
> COos 5 cosa

v
o

IN
[SIE]

2 B07 C07 A17 C17A2$B2

cosa’ — cosb’cosc’

/
cos A’ = - ;
sin b’ sin ¢’
Therefore,
.cosa’ > cosb’cosc’ & cosA' >0
c032%+c052%+c052%—1 (c052%+cos2%+c052%—1)
b C - a c
2cos 3 cos 5 2cos.2cos2
2a 2b 2¢c _
(cos 2+cos 2+cos 2 )
a b
2coszcos2
2
2a 2b 2c
c052%+cos2%+c052%—1 N (cos 5 +cos® 5 + cos 5—1)
b [+ = 2a b <
2coszcos2 4 cos 3 COS 3 COS 3
2
,a , b ,c (cos“—?‘-}-cosz%%-cosz%—l)
cos® — +cos®* — +cos" - —1 > T a
2 2 2 2cos” 5
LS cosz%—l-cosz%%-cosz%—l
- 2cos2%
a a b c
2 cos? — > cos? = +cos? — +cos? = — 1
2 2 2 2
2 a 2 b 2 €
cos“ — > cos“*—+4cos‘=—~—-1
2 - 2 2
1+ cosa S l1+cosb 1+ cose 1
2 - 2 2
l4+cosa > 1+4+cosb+14cosc—2
l+cosa > cosb+cose
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From inequality 4.5 we may say 1+ cosa > 1 + cosbcosc.
So, if we can show 1+ cosbcose > cosb + cosc,

we may conclude 1+ cosa > cosb + cosc.

l1+cosbcosc > cosb+cosc
1 > cosb+cosc—éosbcosc

1 > cosb+cosc(l—cosb)
Since we have shown 0 < cosb < 1 and 0 < cosc < 1, we may say
1> cosb +cosc(l—cosb)
Therefore, we may conclude

cosa’ > cosb’cosc

cosA’ >0
Al <%
Similarly, we may say
g > B, C

Therefore, we may conclude that any triangle obtained from repeatedly applying triangle
subdivision to the octant and its children will be acute. Suppose we have a tessellation of
the surface of the sphere that has been generated by applying triangle subdivision to the
octants of the sphere and repeatedly to the resulting child triangles. Since each of these
triangles is acute we may say that it is Type I and conclude that the tessellation is an acute
tessellation. Additionally, we may conclude that the polyhedron that corresponds to this

tessellation is valence three.



4.3.4 The Edge-Beveling Algorithm

Using labeling similar to that used in Doo’s algorithm, we describe edge-beveling as follows.
We have Type F faces and differently defined Type E faces. Eliminating the Type V face,
we replace it with a new vertex called the Y-point, along with the three face points from
Doo’s algorithm. The Y-point is at the intersection of the Type E faces that replace the
edges adjacent to a vertex.

We use a different definition for the centers of our faces. A center is chosen so that it is
the point at which the face is tangent to the inscribed sphere. For an original face we use

the centroid of that face for our center, that is, for each of the cube’s faces the center is

0 1 ! 0]
Ci:_ZPi
4i:1

As the object is refined, centers are calculated for new Type E faces, but Type F faces
retain their center points; they are not recalculated at each new level. As we have described,
the center of each new Type E face is the midpoint of the geodesic between the centers of
the Type F faces adjacent to it.

Given a level k vertex, Pf, and the center points, Cf",j and Cf'c,j+1’ of two of the adjacent
Type F faces, we may calculate the midpoint of this geodesic. Assuming a sphere centered
on the origin, we will calculate the normal vectors at center points Cf-‘,j and Cf,j+1' Since

these points are tangent to the sphere, the normal vectors are

o <Cf1>
RERICH
'fil»: 1 = <Cﬁj+1>
N (Ctia) |

We note that l <Cf]> ' is the radius of the sphere.
Let P]zj(i,j) be the point on Pf‘"Pf“Jr2 that is the common perpendicular to Cﬁj and C£,j+1.
As shown above, this is also the closest point on P¥P¥ , to 3 (Cf"j + Cf-‘,jﬂ). Then the

new center point, Cfﬂz, is

1
k+1 k k k
Ciire = (L= t) P iy + i [5 (Ci.j + Ci,j+1)]
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where

1
t -
k 1 + cos (6k)
—_— =k -
b - T — cos™? (ni_j-nﬁjﬂ)

k+1

A new Type E face lies in the plane that is tangent to the inscribed sphere at Crh-

Therefore, the normal vector, 7, of this plane is
k+1
(Ch)
k+1
|(ci) |

With this point and vector we have defined the plane in which this face lies. Each vertex

n =

is replaced by a Y-point and three new face points. Since all vertices remain valence three,
each vertex will have three new Type E faces that replace the edges incident to it. When
we have defined the planes in which these three new Type E faces lie, we may calculate this
vertex’s Y-point along with the three face points that replace the vertex.

Following the development in section 4.2, we will consider a cube with side length 2 and
vertices (£1, %1, £1) (Figure 4.30). Each of the cube’s faces lies in a plane that is tangent
to the inscribed unit sphere centered on the origin. As the cube is refined, all new faces
continue to be tangent to the unit sphere (sce Figure 4.5).

Again, consider vertices

P, = (1,1,1)
Poo = (-1,1,1)
Po; = (1,-1,1)
Po, = (1,1,-1)

along with the adjacent tangent planes

Poo = (Co,0,70,0)
Po1 = (Co1,701)
Poo = (Coy2,702)

S7



where the points at which the planes are tangent to the sphere are
Coo = (1,0,0)
CO,l = (07 17 0)
CO,2 = (Oa 0, 1)
with normal vectors
oo = (1,0,0)
fion = (0,1,0)
ﬁO,Z (O» 0, 1)

The three edges adjacent to Pg are replaced with new Type E faces that lie in planes
735,0 = (Co 0> 7o o)
Poy = (Co 1719 1)
7)(},2 = (Co,z» 71(1),2)

where

o
S
)

NP

o

)
7)
)

SRR
oI5

@

_OH

I |
TN T N TN

are the centers of the faces and

L [ VR
oo = A0y
L [VE Ve
Tor = \ 5 0%
L Vi V3
oz =\ gl

are the normal vectors of the planes. We can calculate the Y-point and three face points

by intersecting these planes.

Y(l) = 7)(%,0 n ,P(},l n P&,:z
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V2 V2 V2
27272

Pio = PooNPiiNPL,
= (1, V2 -1,v2 - 1)

Poi = PoaNPioNPL,
= (Vi-1,1,v2-1)

Py, = PoaNPion Py

= (\/5—1,\/5—1,1)

)

Figure 4.30: Y-Point with Three New Face Points

In general, then, given a vertex on the control polyhedron, P¥, and the planes around

39



it, Pk 0 (Cl 0> nfo) ’P,.kl (Cf‘l, h 1) and Pk ( 12 fQ) we may calculate the new Y-point,

Yk+l and three new face points, P¥t1, that replace Pf. 4

1] ’
Yl{C-i—l — Pk-}-l N Pk+1 N0 Pk+l
k k k k
P = PL0PHL PR,
k+1 k41 ~k+1
7)2’] - (Cl 7 ? ’-7 )
where
Cﬁjl = (1- tk)PL p(i,7) + tk [ (Ck]'f‘l + Cz]+2)]
. _ 1
S| + cos by
T —cos™! (ﬁf“jﬂ . ﬁf"’ﬁg)
B, = 5
P.k. — Pf-“ e + C¥
Pk(l’]) — P:: + < > <2 ( ]+1 ]+2) > <P Pk>
‘ Pk PA % (Cfﬁ—l + C1 J+2)
and

4.4 Ellipsoids

Following the discussion of ellipses in 3.4, we will consider an ellipsoid centered on the origin

with its axes aligned with the axes of the coordinate system

3:2 y2 22
amtpte=!

This ellipsoid may be obtained by taking every point, P;(z,y, z), on the unit sphere and
scaling it to a point on the ellipsoid, P, (24, yB, zC).

In the same manner, we may begin with the cube (£1,41,41) and scale it into the
rectangular prism (+A,£B,£C). Using the method in section 4.3.4, we may generate a
piecewise planar model of the sphere and scale it to a piecewise planar model of the ellipsoid
such that every face of the model lies in a plane that is tangent to the ellipsoid at the face’s

center (Figures 4.31 and 4.32).

*subscript j modulo 3
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Figure 4.31: Rectangular Prism after First Refinement
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Figure 4.32: Rectangular Prism after Second Refinement
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Chapter 5

Conclusions

In this paper, we have presented an algorithm for producing piecewise planar approximations
of a sphere. Beginning with a cube, we have produced arbitrarily close approximations of its
inscribed sphere by repeatedly bevel-cutting edges. We have shown how this method may
generate piecewise planar models for ellipsoids and spheres that are arbitrarily smooth.
We have discussed a simple procedure to construct an arbitrarily close piecewise linear
approximation of a circle and have adapted this procedure to Chaikin’s algorithm. Using
this modification of Chaikin’s algorithm, we have, in the limit, produced piecewise elliptical
curves,

We may measure the smoothness of our models by comparing the angle (¢) between
adjacent faces, noting that ¢ — m as £ — oo. It is not necessary to measure each angle in
the model to see if it has the smallest ¢ in the model; this may always be found by following
the worst case (smallest ¢) from one refinement to the next. That is, the search for the
smallest ¢ is linear. Given a heuristic that associates the prominence of an object in the
scene with a minimally acceptable ¢, we can calculate a priori the level of refinement that
will contain an acceptable level of detail. Suppose we had a scene that contained several
spheres and ellipsoids. We could calculate the minimum and maximum ¢ needed to produce
acceptable levels of detail. Using this ¢, we could calculate the minimum and maximum
levels of refinement required. Starting with the unit sphere, we could pre-generate and store
models at the levels in this range. When a sphere of radius r with a required level of detail
k was needed, we could translate and scale the unit sphere model at level k. For ellipsoids

we would first scale the unit sphere along each of its three axes separately, using the A, B,
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and C for this ellipsoid, then translate and rotate it into position in the scene.

5.1 Further Work

The model meshes we have used throughout chapter 4 have had a regular topology. We
would like to extend this method to more arbitrary, if not completely arbitrary meshes. One
problem that must be overcome concerns edges that over-cut neighboring faces. Consider

the following level £ = 0 model.

Cutting—plane
over—cuts small face

Po,.

Figure 5.1: Over-cutting Small Face

Here we have a cube that has had one of its corners cut off slightly. Our method only
considers the faces adjacent to an edge when deciding how deeply that edge is to be cut.

If we cut off edge eg1, we will completely remove the face formed by points Py, Po,2, Po3.
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The question remains, how will this be done? We have explored two approaches without
success.

First, we could attempt to individualize the process to a vertex. The idea is to use only
local information to calculate the new Y-point and the three new face points at each vertex.
To do this, we would no longer retain the center points for each face but would calculate
them on-the-fly for each vertex. In pursuing this approach, we noticed that the faces of the
cube and all refinements of it had an interesting property. At any level of refinement of the

spherical approximation, consider any edge along with its adjacent faces. They will have:
1. The centers of the faces equal distance from the edge.

2. The closest point on the edge to one of the centers is also the closest point on the

edge to the other.

We found this property to be suggestive of two-dimensional Vorinori diagrams. Consider a
valence-three vertex of a Vorinori diagram where we have the edges, but not the data points
(center points) from which the tiles were generated. Using only the vertex and the three
rays emanating from it, it is possible to calculate center lines on which the center points lie.
By intersecting the lines from two vertices of the face we may find the tile’s data or center
point. We were able to adapt this method to our surface tiles and on the spherical model
calculate the center points from the information available from the vertices only. Iowever,
it is unclear how we can apply this to less uniform models. For instance, the rectangular
prism used to model an ellipsoid does not have property 1 above, and its center lines do
not necessarily intersect at a unique point. With further research we may be able to find a
satisfactory way to combine these differing center points into one center for the face.
Secondly, our algorithm also has the property that all new Type E faces are parallel to
the edges they replace. We considered the possibility of relaxing this so that the cutting
plane used to define this face would not necessarily be parallel to the edge. When we define
a new center point for our new Type E face, we blend the center points of the two adjacent
faces. Not only is the new center point at the midpoint of the geodesic from the two adjacent
centers , as in section 4.4, but the normal vector at this point is a blend of the two normals.
We have explored schemes to make the new center point and the normal at this point not
only a combination of the two adjacent points but also the two center points of the faces at

the end of the edge.



Cutling—plane not
parallel to edge e,

Po.i

R

Figure 5.2: Non-parallel Cutting-plane
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