Exercise Set 1.8

- ► In Exercises 1–2, find the domain and codomain of the transformation $T_A(\mathbf{x}) = A\mathbf{x}$.
- 1. (a) A has size 3×2 .
- (b) A has size 2×3 .
- (c) A has size 3×3 .
- (d) A has size 1×6 .
- **2.** (a) A has size 4×5 .
- (b) A has size 5×4 .
- (c) A has size 4×4 .
- (d) A has size 3×1 .
- In Exercises 3–4, find the domain and codomain of the transformation defined by the equations.
- 3. (a) $w_1 = 4x_1 + 5x_2$

(b)
$$w_1 = 5x_1 - 7x_2$$

$$w_2 = x_1 - 8x_2$$

$$w_2 = 6x_1 + x_2$$

$$w_3 = 2x_1 + 3x_2$$

- **4.** (a) $w_1 = x_1 4x_2 + 8x_3$ (b) $w_1 = 2x_1 + 7x_2 4x_3$

 - $w_2 = -x_1 + 4x_2 + 2x_3$
- $w_2 = 4x_1 3x_2 + 2x_3$
- $w_3 = -3x_1 + 2x_2 5x_3$
- ► In Exercises 5–6, find the domain and codomain of the transformation defined by the matrix product.
- **5.** (a) $\begin{bmatrix} 3 & 1 & 2 \\ 6 & 7 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & -1 \\ 4 & 3 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
- **6.** (a) $\begin{bmatrix} 6 & 3 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
- (b) $\begin{bmatrix} 2 & 1 & -6 \\ 3 & 7 & -4 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$
- ► In Exercises 7–8, find the domain and codomain of the transformation T defined by the formula.
- 7. (a) $T(x_1, x_2) = (2x_1 x_2, x_1 + x_2)$
 - (b) $T(x_1, x_2, x_3) = (4x_1 + x_2, x_1 + x_2)$
- **8.** (a) $T(x_1, x_2, x_3, x_4) = (x_1, x_2)$
 - (b) $T(x_1, x_2, x_3) = (x_1, x_2 x_3, x_2)$
- In Exercises 9–10, find the domain and codomain of the transformation *T* defined by the formula.
- $\mathbf{9.} \ T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 4x_1 \\ x_1 x_2 \\ 3x_2 \end{bmatrix} \quad \mathbf{10.} \ T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_3 \end{bmatrix}$
- ► In Exercises 11–12, find the standard matrix for the transformation defined by the equations.
- **11.** (a) $w_1 = 2x_1 3x_2 + x_3$ $w_2 = 3x_1 + 5x_2 - x_3$
- (b) $w_1 = 7x_1 + 2x_2 8x_3$ $w_2 = -x_2 + 5x_3$ $w_3 = 4x_1 + 7x_2 - x_3$

- **12.** (a) $w_1 = -x_1 + x_2$
- (b) $w_1 = x_1$ $w_2 = x_1 + x_2$

$$w_2 = 3x_1 - 2x_2$$

$$w_3 = x_1 + x_2 + x_3$$

$$w_3 = 5x_1 - 7x_2$$

$$w_4 = x_1 + x_2 + x_3 + x_4$$

- 13. Find the standard matrix for the transformation T defined by the formula.
 - (a) $T(x_1, x_2) = (x_2, -x_1, x_1 + 3x_2, x_1 x_2)$
 - (b) $T(x_1, x_2, x_3, x_4) = (7x_1 + 2x_2 x_3 + x_4, x_2 + x_3, -x_1)$
 - (c) $T(x_1, x_2, x_3) = (0, 0, 0, 0, 0)$
 - (d) $T(x_1, x_2, x_3, x_4) = (x_4, x_1, x_3, x_2, x_1 x_3)$
- **14.** Find the standard matrix for the operator T defined by the
 - (a) $T(x_1, x_2) = (2x_1 x_2, x_1 + x_2)$
 - (b) $T(x_1, x_2) = (x_1, x_2)$
 - (c) $T(x_1, x_2, x_3) = (x_1 + 2x_2 + x_3, x_1 + 5x_2, x_3)$
 - (d) $T(x_1, x_2, x_3) = (4x_1, 7x_2, -8x_3)$
- 15. Find the standard matrix for the operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined

$$w_1 = 3x_1 + 5x_2 - x_3$$

$$w_2 = 4x_1 - x_2 + x_3$$

$$w_3 = 3x_1 + 2x_2 - x_3$$

and then compute T(-1, 2, 4) by directly substituting in the equations and then by matrix multiplication.

16. Find the standard matrix for the transformation $T: \mathbb{R}^4 \to \mathbb{R}^2$ defined by

$$w_1 = 2x_1 + 3x_2 - 5x_3 - x_4$$

$$w_2 = x_1 - 5x_2 + 2x_3 - 3x_4$$

and then compute T(1, -1, 2, 4) by directly substituting in the equations and then by matrix multiplication.

- ► In Exercises 17–18, find the standard matrix for the transformation and use it to compute $T(\mathbf{x})$. Check your result by substituting directly in the formula for T.
- **17.** (a) $T(x_1, x_2) = (-x_1 + x_2, x_2)$; $\mathbf{x} = (-1, 4)$
 - (b) $T(x_1, x_2, x_3) = (2x_1 x_2 + x_3, x_2 + x_3, 0);$ $\mathbf{x} = (2, 1, -3)$
- **18.** (a) $T(x_1, x_2) = (2x_1 x_2, x_1 + x_2)$; $\mathbf{x} = (-2, 2)$
 - (b) $T(x_1, x_2, x_3) = (x_1, x_2 x_3, x_2); \mathbf{x} = (1, 0, 5)$
- In Exercises 19–20, find $T_A(\mathbf{x})$, and express your answer in matrix form.
- **19.** (a) $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$; $\mathbf{x} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$
 - (b) $A = \begin{bmatrix} -1 & 2 & 0 \\ 3 & 1 & 5 \end{bmatrix}$; $\mathbf{x} = \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} -1 & 1 \\ 2 & 4 \\ 7 & 8 \end{bmatrix}$$
; $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

- In Exercises 21–22, use Theorem 1.8.2 to show that T is a matrix transformation.
- **21.** (a) T(x, y) = (2x + y, x y)
 - (b) $T(x_1, x_2, x_3) = (x_1, x_3, x_1 + x_2)$
- **22.** (a) T(x, y, z) = (x + y, y + z, x)
 - (b) $T(x_1, x_2) = (x_2, x_1)$
- In Exercises 23–24, use Theorem 1.8.2 to show that T is not a matrix transformation.
- **23.** (a) $T(x, y) = (x^2, y)$
 - (b) T(x, y, z) = (x, y, xz)
- **24.** (a) T(x, y) = (x, y + 1)
 - (b) $T(x_1, x_2, x_3) = (x_1, x_2, \sqrt{x_3})$
- **25.** A function of the form f(x) = mx + b is commonly called a "linear function" because the graph of y = mx + b is a line. Is f a matrix transformation on R?
- **26.** Show that T(x, y) = (0, 0) defines a matrix operator on R^2 but T(x, y) = (1, 1) does not.
- In Exercises 27–28, the images of the standard basis vectors for R^3 are given for a linear transformation $T: R^3 \to R^3$. Find the standard matrix for the transformation, and find $T(\mathbf{x})$.
- 27. $T(\mathbf{e}_1) = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$, $T(\mathbf{e}_2) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $T(\mathbf{e}_3) = \begin{bmatrix} 4 \\ -3 \\ -1 \end{bmatrix}$; $\mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$
- **28.** $T(\mathbf{e}_1) = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, T(\mathbf{e}_2) = \begin{bmatrix} -3 \\ -1 \\ 0 \end{bmatrix}, T(\mathbf{e}_3) = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}; \mathbf{x} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$
- **29.** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator for which the images of the standard basis vectors for \mathbb{R}^2 are $T(\mathbf{e}_1) = (a, b)$ and $T(\mathbf{e}_2) = (c, d)$. Find T(1, 1).

- **30.** We proved in the text that if $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation, then $T(\mathbf{0}) = \mathbf{0}$. Show that the converse of this result is false by finding a mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ that is not a matrix transformation but for which $T(\mathbf{0}) = \mathbf{0}$.
- **31.** Let $T_A: R^3 \to R^3$ be multiplication by

$$A = \begin{bmatrix} -1 & 3 & 0 \\ 2 & 1 & 2 \\ 4 & 5 & -3 \end{bmatrix}$$

and let \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 be the standard basis vectors for \mathbb{R}^3 . Find the following vectors by inspection.

- (a) $T_A(\mathbf{e}_1)$, $T_A(\mathbf{e}_2)$, and $T_A(\mathbf{e}_3)$
- (b) $T_A(\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3)$ (c) $T_A(7\mathbf{e}_3)$

Working with Proofs

- **32.** (a) Prove: If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation, then $T(\mathbf{0}) = \mathbf{0}$; that is, T maps the zero vector in \mathbb{R}^n into the zero vector in \mathbb{R}^m .
 - (b) The converse of this is not true. Find an example of a function T for which $T(\mathbf{0}) = \mathbf{0}$ but which is not a matrix transformation.

True-False Exercises

- **TF.** In parts (a)–(g) determine whether the statement is true or false, and justify your answer.
- (a) If A is a 2 × 3 matrix, then the domain of the transformation T_A is R^2 .
- (b) If A is an $m \times n$ matrix, then the codomain of the transformation T_A is R^n .
- (c) There is at least one linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ for which $T(2\mathbf{x}) = 4T(\mathbf{x})$ for some vector \mathbf{x} in \mathbb{R}^n .
- (d) There are linear transformations from R^n to R^m that are not matrix transformations.
- (e) If $T_A: \mathbb{R}^n \to \mathbb{R}^n$ and if $T_A(\mathbf{x}) = \mathbf{0}$ for every vector \mathbf{x} in \mathbb{R}^n , then A is the $n \times n$ zero matrix.
- (f) There is only one matrix transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ such that $T(-\mathbf{x}) = -T(\mathbf{x})$ for every vector \mathbf{x} in \mathbb{R}^n .
- (g) If **b** is a nonzero vector in R^n , then $T(\mathbf{x}) = \mathbf{x} + \mathbf{b}$ is a matrix operator on R^n .