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Exercise Set 6.3

1. In each part, determine whether the set of vectors is orthog-
onal and whether it is orthonormal with respect to the Eu-
clidean inner product on R?.

(@) (0, 1), (2,0)

® (% %) (% %)
© (~F %) (3 %)
(d) (0,0), (0, 1)

2. In each part, determine whether the set of vectors is orthog-
onal and whether it is orthonormal with respect to the Eu-
clidean inner product on R3.

@ (5:0.2). (5.5 -3). (-50.3)
® G =53 G -3 (33)
© (1,0.0, (0.4, %), ©
@ (% —%) (5 -%0)
3. In each part, determine whether the set of vectors is orthog-

onal with respect to the standard inner product on P, (see
Example 7 of Section 6.1).

@ pi(x) =2 —3x+1x% pa(x) = 3 4 1x — 3x2,
pi(x) = 3+ 3x + 3%
(b) p1(x) =1, pa(x) = %x + %xz, ps3(x) = x?
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4. In each part, determine whether the set of vectors is orthog-
onal with respect to the standard inner product on M», (sece
Example 6 of Section 6.1).
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0 0 0 0 1 1 1 -1
In Exercises 5-6, show that the column vectors of A form an
orthogonal basis for the column space of A with respect to the

Euclidean inner product, and then find an orthonormal basis for
that column space.
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7. Verify that the vectors
vi=(-%1%0), »=(%1,0), s=(0,0,1)

form an orthonormal basis for R® with respect to the Eu-
clidean inner product, and then use Theorem 6.3.2(b) to ex-
press the vector u = (1, —2, 2) as a linear combination of v,
V2, and V3.

8. Use Theorem 6.3.2(b) to express the vector u = (3, —7, 4) as
a linear combination of the vectors vy, v,, and v; in Exercise 7.
9. Verify that the vectors
vi=(2,-2,1), »w=02,1,-2), vs=(1,2,2)
form an orthogonal basis for R3 with respect to the Euclidean
inner product, and then use Theorem 6.3.2(a) to express the
vectoru = (—1, 0, 2) as a linear combination of v{, v,, and v3.
10. Verify that the vectors
vi=(1,-1,2,-1), w»=(-2,273,2),
vy = (1,2,0,-1), vy =(1,0,0,1)
form an orthogonal basis for R* with respect to the Euclidean
inner product, and then use Theorem 6.3.2(«a) to express the

vector u = (1, 1,1, 1) as a linear combination of vy, v, v3,
and vy.

In Exercises 11-14, find the coordinate vector (u)g for the vec-
tor u and the basis S that were given in the stated exercise.

11. Exercise 7 12. Exercise 8

13. Exercise 9 14. Exercise 10

In Exercises 15-18, let R? have the Euclidean inner product.

(a) Find the orthogonal projection of u onto the line spanned by
the vector v.

(b) Find the component of u orthogonal to the line spanned by
the vector v, and confirm that this component is orthogonal
to the line.

5.u=(-16; v=(3%) 16u=23); v=(3,2)

17.u=(2.3); v=(1,1) 18.u=(3,—1); v=(3,4)

In Exercises 19-22, let R? have the Euclidean inner product.

(a) Find the orthogonal projection of u onto the plane spanned
by the vectors v; and v,.

(b) Find the component of u orthogonal to the plane spanned
by the vectors v; and v,, and confirm that this component is
orthogonal to the plane.

19.u=421); v=(3.2-3), »=(319
20.u=(3—-1,2); v, = (L L
2l.u=(1,0,3); vy=(1,-2,1), »=(2,1,0)
22.u=(1,0,2); vi=(3,1,2), »=(-1L11)

In Exercises 23-24, the vectors v; and v, are orthogonal with
respect to the Euclidean inner product on R*. Find the orthogo-
nal projection of b = (1, 2, 0, —2) on the subspace W spanned by
these vectors.

.vi=1LLD, v»=(,1-1-1)
24.v=(0,1,-4,-1), »=(3,51,1)



In Exercises 25-26, the vectors vy, V,, and v3 are orthonor-
mal with respect to the Euclidean inner product on R*. Find the
orthogonal projection of b = (1,2, 0, —1) onto the subspace W
spanned by these vectors.

— 1 4 1 _ (1 5 1 1
25. vy = (0, 7 7S —T>, V2 = (5, 66’ g),
= (; 0. L L)
=\ TR TR
1 1 1 11 1 1
26. vi = ’555) = (555 -3);
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In Exercises 27-28, let R? have the Euclidean inner product
and use the Gram—Schmidt process to transform the basis {u;, u,}

into an orthonormal basis. Draw both sets of basis vectors in the
xy-plane.
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27.u, =(1,-3), w=(2,2) 28.u; =(1,0), wy=(3,-5)

In Exercises 29-30, let R have the Euclidean inner product and
use the Gram—Schmidt process to transform the basis {u;, u,, us}
into an orthonormal basis.

29w =(L L1, =110, us=(1,2,1)

30. u; =(1,0,0), » =(3,7,-2), us =(0,4,1)

31. Let R* have the Euclidean inner product. Use the Gram—
Schmidt process to transform the basis {uy, u,, u3, us} into an
orthonormal basis.

u =(0,2,1,0),
u; = (1,2,0, 1),

w = (1,-1,0,0),
uy = (1,0,0,1)

32. Let R? have the Euclidean inner product. Find an orthonor-
mal basis for the subspace spanned by (0, 1,2), (—1,0, 1),
(-1,1, 3).

33. Let b and W be as in Exercise 23. Find vectors w; in W and
w, in W+ such that b = w; + w,.

34. Let b and W be as in Exercise 25. Find vectors w; in W and
w, in W+ such that b = w; + w,.

35. Let R? have the Euclidean inner product. The subspace of
R? spanned by the vectorsu; = (1,1, 1) and u, = (2,0, —1)
is a plane passing through the origin. Express w = (1, 2, 3)
in the form w = w; + w,, where w, lies in the plane and w, is
perpendicular to the plane.

36. Let R* have the Euclidean inner product. Express the vector
w = (—1,2,6,0) in the form w = w; + w,, where w; is in the
space W spanned by u; = (—1,0,1,2) andu, = (0, 1,0, 1),
and w, is orthogonal to W.

37. Let R have the inner product
(u, v) = uyv; + 2uyv7 + 3usv;

Use the Gram—Schmidt process to transform u; = (1, 1, 1),
u, = (1,1,0),u3 = (1, 0, 0) into an orthonormal basis.
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38. Verify that the set of vectors {(1, 0), (0, 1)} is orthogonal with
respect to the inner product (u, v) = 4u, v, + u,v, on R?; then
convert it to an orthonormal set by normalizing the vectors.

39. Find vectors x and y in R? that are orthonormal with respect
to the inner product (u, v) = 3u;v; + 2u,v, but are not or-
thonormal with respect to the Euclidean inner product.

40. In Example 3 of Section 4.9 we found the orthogonal projec-
tion of the vector x = (1, 5) onto the line through the origin
making an angle of 77 /6 radians with the positive x-axis. Solve
that same problem using Theorem 6.3.4.

41. This exercise illustrates that the orthogonal projection result-
ing from Formula (12) in Theorem 6.3.4 does not depend on
which orthogonal basis vectors are used.

(a) Let R have the Euclidean inner product, and let W be the
subspace of R* spanned by the orthogonal vectors

vi=(1,0,1) and v, =(0,1,0)
Show that the orthogonal vectors

vi=(1,1,1) and v,=(1,-2,1)
span the same subspace W.

(b) Letu = (=3, 1, 7) and show that the same vector projyu
results regardless of which of the bases in part (a) is used
for its computation.

42. (Calculus required) Use Theorem 6.3.2(a) to express the fol-
lowing polynomials as linear combinations of the first three

Legendre polynomials (see the Remark following Example 9).
(@) 14+ x+4x? (b) 2 — 7x? (c) 44 3x

43. (Calculus required) Let P, have the inner product

1
(p, q) :/0 p(x)q(x)dx

Apply the Gram-Schmidt process to transform the standard
basis S = {1, x, x} into an orthonormal basis.

44. Find an orthogonal basis for the column space of the matrix

6 1 =5
2 1 1
A=
-2 =2 5
6 8 -7

In Exercises 45-48, we obtained the column vectors of Q by
applying the Gram—Schmidt process to the column vectors of A.
Find a Q R-decomposition of the matrix A.

- 1

1 -1 Ve
45.A—2 3:|’Q_|:L
75

1 2
46.A=|0 1|, 0=
1 4
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48. A=|1 1 1|, 0= 5 s %
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49. Find a Q R-decomposition of the matrix
1 0 1
-1 1 1
A= 1 0 1
-1 1 1

50. In the Remark following Example 8 we discussed two alter-
native ways to perform the calculations in the Gram—Schmidt
process: normalizing each orthogonal basis vector as soon as
itis calculated and scaling the orthogonal basis vectors at each
step to eliminate fractions. Try these methods in Example 8.

Working with Proofs
51. Prove part («) of Theorem 6.3.6.

52. In Step 3 of the proof of Theorem 6.3.5, it was stated that “the
linear independence of {u;, uy, ..., u,} ensures that v; = 0.”
Prove this statement.

53. Prove that the diagonal entries of R in Formula (16) are
nonzero.

54. Show that matrix Q in Example 10 has the property
007 = I, and prove that every m x n matrix Q with or-
thonormal column vectors has the property Q07 = 1I,,.

55. (a) Prove that if W is a subspace of a finite-dimensional vec-
tor space V, then the mapping 7:V — W defined by
T (v) = projy v is a linear transformation.

(b) What are the range and kernel of the transformation in
part (a)?

True-False Exercises

TF. In parts (a)-(f) determine whether the statement is true or
false, and justify your answer.

(a) Every linearly independent set of vectors in an inner product
space is orthogonal.

(b) Every orthogonal set of vectors in an inner product space is
linearly independent.

(c) Everynontrivial subspace of R® has an orthonormal basis with
respect to the Euclidean inner product.

(d) Every nonzero finite-dimensional inner product space has an
orthonormal basis.

(e) projy x is orthogonal to every vector of W.

(f) If A is an n x n matrix with a nonzero determinant, then A
has a QR-decomposition.
Working with Technology

T1. (a) Use the Gram-Schmidt process to find an orthonormal
basis relative to the Euclidean inner product for the column

space of
1 1 1 1
1 0 0 1
A =
0 1 0 2
2 -1 1 1

(b) Use the method of Example 9 to find a QR-decomposition
of A.

T2. Let P, have the evaluation inner product at the points
—2,—1,0,1,2. Find an orthogonal basis for P, relative to this
inner product by applying the Gram-Schmidt process to the vec-
tors

4

p=1 p=x p=x p=x, p=x

6.4 Best Approximation; Least Squares

There are many applications in which some linear system Ax = b of m equations in n

unknowns should be consistent on physical grounds but fails to be so because of

measurement errors in the entries of A or b. In such cases one looks for vectors that come

as close as possible to being solutions in the sense that they minimize ||b — Ax|| with respect

to the Euclidean inner product on R™. In this section we will discuss methods for finding

such minimizing vectors.

Least Squares Solutions of
Linear Systems

Suppose that Ax = b is an inconsistent linear system of m equations in n unknowns in
which we suspect the inconsistency to be caused by errors in the entries of A or b. Since

no exact solution is possible, we will look for a vector x that comes as “close as possible”
to being a solution in the sense that it minimizes ||b — Ax|| with respect to the Euclidean



