Recall that (u)g denotes a
coordinate vector expressed
in comma-delimited form
whereas [u]g denotes a coord-
inate vector expressed in
column form.

Exercise Set 7.1

71 Orthogonal Matrices 407

Proof of Theorem 71.5 Assume that V is an n-dimensional inner product space and
that P is the transition matrix from an orthonormal basis B’ to an orthonormal basis
B. We will denote the norm relative to the inner product on V by the symbol || ||y to
distinguish it from the norm relative to the Euclidean inner product on R", which we
will denotévy"||""J"

To prove that P is orthogonal, we will use Theorem 7.1.3 and show that || Px|| = || x||
for every vector x in R”". As a first step in this direction, recall from Theorem 7.1.4(«a)
that for any orthonormal basis for V the norm of any vector u in V' is the same as the
norm of its coordinate vector with respect to the Euclidean inner product, that is,

lullv = [I[ulp [l = [[[u]z]l

or

lully = [I[ulp [l = [ P[u] |l (6)
Now let x be any vector in R”, and let u be the vector in V whose coordinate vector with
respect to the basis B’ is x, that is, [u] g = x. Thus, from (6),

l[ull = lIx|l = I Px]|

which proves that P is orthogonal.

In each part of Exercises 1-4, determine whether the matrixis 7. Let T4: R — R*® be multiplication by the orthogonal matrix

orthogonal, and if so find it inverse.

in Exercise 5. Find T4 (x) for the vector x = (=2, 3, 5), and

g 0 -1 1 confirm that ||74(x)|| = ||x]|| relative to the Euclidean inner
75 T 5 3
1. (a) :| (b) Jlf «? ] product on R°.
0 -l L2 V2 8. Let T4: R® — R be multiplication by the orthogonal matrix in
Exercise 6. Find T, (x) for the vector x = (0, 1, 4), and con-
1 0 '% % firm ||T4(x)|| = ||x|| relative to the Euclidean inner product
2. (a) ®) | . on R3.
01 RV . o
9. Are the standard matrices for the reflections in Tables 1 and 2
o0 1 . - . . of Section 4.9 orthogonal?
V2 f Jf f 10. Are the standard matrices for the orthogonal projections in
3.(@ 1 0 0 (b) G NG Tables 3 and 4 of Section 4.9 orthogonal?
o 0 L L L L
L V2 L V2 V6 V3 11. What conditions must a and b satisfy for the matrix
|:a +b b- a]
% % % % 1 0 0 0 a—b b+a
o _5 1 1 L 1 to b th 1?
. ! : ! ! " 0 % ! 0 o0 be orthogona
3 3 : =2 0 % 0 1 12. Under what conditions will a diagonal matrix be orthogonal?
_% é —% é K % i 0 13. Let a rectangular x’y’-coordinate system be obtained by ro-
tating a rectangular xy-coordinate system counterclockwise
In Exercises 5-6, show that the matrix is orthogonal three ways: through the angle 6§ = 7/3.

first by calculating A”A, then by using part (b) of Theorem 7.1.1,
and then by using part (¢) of Theorem 7.1.1.

|
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|
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(a) Find the xy’-coordinates of the point whose
xy-coordinates are (—2, 6).

(b) Find the xy-coordinates of the point whose
x'y'-coordinates are (5, 2).

W= W W

W Wi w—
W W= W

14. Repeat Exercise 13 with 6 = 37 /4.
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15.

16.

17.

18.

19.
20.

21.

22.

Let a rectangular x’yz’-coordinate system be obtained by ro-

tating a rectangular xyz-coordinate system counterclockwise

about the z-axis (looking down the z-axis) through the angle

0 =m/4.

(a) Find the x'y’z’-coordinates of the point whose
xyz-coordinates are (—1, 2, 5).

(b) Find the xyz-coordinates of the point whose
x'y’z'-coordinates are (1, 6, —3).

Repeat Exercise 15 for a rotation of & = 37 /4 counterclock-
wise about the x-axis (looking along the positive x-axis toward
the origin).

Repeat Exercise 15 for a rotation of 6 = 7 /3 counterclockwise
about the y-axis (looking along the positive y-axis toward the
origin).

A rectangular x'y’z’-coordinate system is obtained by rotating
an xyz-coordinate system counterclockwise about the y-axis
through an angle 8 (looking along the positive y-axis toward
the origin). Find a matrix A such that

x’ X
Y=Aly
7' z

where (x, v, z) and (x/, ¥/, z’) are the coordinates of the same
point in the xyz- and x'y’z’-systems, respectively.

Repeat Exercise 18 for a rotation about the x-axis.

1"\

A rectangular x”y”z”-coordinate system is obtained by first
rotating a rectangular xyz-coordinate system 60° counter-
clockwise about the z-axis (looking down the positive z-axis)
to obtain an x'y’z’-coordinate system, and then rotating the
x'y'7’-coordinate system 45° counterclockwise about the y’-
axis (looking along the positive y’-axis toward the origin).
Find a matrix A such that

x//

"

X
y// —A y
Z Z

" n

where (x, y,z) and (x”,y”,7") are the xyz- and x"y"z
coordinates of the same point.

A linear operator on R? is called rigid if it does not change the
lengths of vectors, and it is called angle preserving if it does
not change the angle between nonzero vectors.

(a) Identify two different types of linear operators that are
rigid.

(b) Identify two different types of linear operators that are
angle preserving.

(c) Are there any linear operators on R? that are rigid and not
angle preserving? Angle preserving and not rigid? Justify
your answer.

Can an orthogonal operator T4: R" — R" map nonzero vec-
tors that are not orthogonal into orthogonal vectors? Justify
your answer.

23.

24,

=L L 3y2_ 2L -
The set S = {ﬁ, 7% \/; \/Zl is an orthonormal ba
sis for P, with respect to the evaluation inner product at the

pointsxg = —1,x;, =0, x, = 1. Letp=p(x) =1 +x + x>
and q = g(x) = 2x — x2%.

(a) Find (p)s and (q)s.
(b) Use Theorem 7.1.4 to compute ||p||, d(p, q) and {p, q).

Thesets S = {l,x}and §' = I%(l + x), %(1 — x)] are or-
thonormal bases for P; with respect to the standard inner
product. Find the transition matrix P from S to §’, and ver-
ify that the conclusion of Theorem 7.1.5 holds for P.

Working with Proofs

25.

26.

27.

28.

29.

Prove that if x is an n x 1 matrix, then the matrix

A=1,— —xx’
xT'x

is both orthogonal and symmetric.

Prove that a 2 x 2 orthogonal matrix A has only one of two

possible forms:
—sin@ A= cosf sin 6
cosé " |sinf —cos6

cosf
A= .
sin 6
where0 < 6 < 2m. [Hint: Startwitha general2 X 2 matrix A,
and use the fact that the column vectors form an orthonormal
setin R2.]

(a) Use the result in Exercise 26 to prove that multiplication
by a 2 x 2 orthogonal matrix is a rotation if det(A) = 1
and a reflection followed by a rotation if det(A) = —1.

(b) In the case where the transformation in part (a) is a reflec-
tion followed by a rotation, show that the same transfor-
mation can be accomplished by a single reflection about
an appropriate line through the origin. What is that line?
[Hint: See Formula (6) of Section 4.9.]

In each part, use the result in Exercise 27(a) to determine
whether multiplication by A is a rotation or a reflection fol-
lowed by rotation. Find the angle of rotation in both cases,
and in the case where it is a reflection followed by a rotation
find an equation for the line through the origin referenced in
Exercise 27(b).

_ 1 _1
(a)A:[f f} a=| > 2

7

[
o=

The result in Exercise 27(a) has an analog for 3 x 3 orthogo-
nal matrices. It can be proved that multiplication by a 3 x 3
orthogonal matrix A is a rotation about some line through the
origin of R? if det(A) = 1 and is a reflection about some co-
ordinate plane followed by a rotation about some line through
the originif det(A) = —1. Use the first of these facts and The-
orem 7.1.2 to prove that any composition of rotations about
lines through the origin in R* can be accomplished by a single
rotation about an appropriate line through the origin.



30. Euler’s Axis of Rotation Theorem states that: If A is an orthog-
onal 3 x 3 matrix for which det(A) = 1, then multiplication by
A is a rotation about a line through the origin in R®. Moreover,
if wis a unit vector along this line, then Au = u.

(a) Confirm that the following matrix A is orthogonal, that
det(A) = 1, and that there is a unit vector u for which
Au=u.

Qo 2w e
Qo Qe 9w
=W e oy

(b) Use Formula (3) of Section 4.9 to prove thatif Aisa3 x 3
orthogonal matrix for which det(A) = 1, then the angle
of rotation resulting from multiplication by A satisfies the
equation cosf = %[tr(A) — 1]. Use this result to find the
angle of rotation for the rotation matrix in part (a).

31. Prove the equivalence of statements (a) and (c¢) that are given
in Theorem 7.1.1.

True-False Exercises

TF. In parts (a)-(h) determine whether the statement is true or
false, and justify your answer.
1 0
(a) The matrix [0 1
0 0

is orthogonal.

1
(b) The matrix |:2 1] is orthogonal.

() Anm x n matrix A is orthogonal if ATA = TI.

(d) A square matrix whose columns form an orthogonal set is
orthogonal.

(e) Every orthogonal matrix is invertible.

(f) If A is an orthogonal matrix, then A? is orthogonal and
(det A)? = 1.

12
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(g) Everyeigenvalue of an orthogonal matrix has absolute value 1.

(h) If A is a square matrix and ||Au|| = 1 for all unit vectors u,
then A is orthogonal.

Working with Technology

T1. If a is a nonzero vector in R”, then aa’ is called the outer
product of a with itself, the subspace a* is called the hyperplane in
R" orthogonal to a, and the n x n orthogonal matrix

2 7
Hyy =1-— Eaa

is called the Householder matrix or the Householder reflection
about a*, named in honor of the American mathematician Al-
ston S. Householder (1904-1993). In R? the matrix H,. represents
a reflection about the line through the origin that is orthogonal to
a, and in R? it represents a reflection about the plane through the
origin that is orthogonal to a. In higher dimensions we can view
H,. asa “reflection” about the hyperplane a'. Householder reflec-
tions are important in large-scale implementations of numerical
algorithms, particularly Q R-decompositions, because they can be
used to transform a given vector into a vector with specified zero
components while leaving the other components unchanged. This
is a consequence of the following theorem [see Contemporary Lin-
ear Algebra, by Howard Anton and Robert C. Busby (Hoboken,
NJ: John Wiley & Sons, 2003, p. 422)].

Theorem. If v and w are distinct vectors in R" with the same
norm, then the Householder reflection about the hyperplane
(v — w)* maps v into w and conversely.

(a) Find a Householder reflection that maps the vector
v = (4,2, 4) into a vector w that has zeros as its second
and third components. Find w.

() Find a Householder reflection that maps the vector
v = (3,4, 2,4) into the vector whose last two entries are
zero, while leaving the first entry unchanged. Find w.

Orthogonal Diagonalization

In this section we will be concerned with the problem of diagonalizing a symmetric matrix

A. As we will see, this problem is closely related to that of finding an orthonormal basis for

R™ that consists of eigenvectors of A. Problems of this type are important because many of

the matrices that arise in applications are symmetric.

The Orthogonal
Diagonalization Problem

In Section 5.2 we defined two square matrices, A and B, to be similar if there is an
invertible matrix P such that P~!AP = B. In this section we will be concerned with

the special case in which it is possible to find an orthogonal matrix P for which this

relationship holds.

We begin with the following definition.



