Exercise Set 8.1

- ▶ In Exercises 1–2, suppose that T is a mapping whose domain is the vector space M_{22} . In each part, determine whether T is a linear transformation, and if so, find its kernel.
- 1. (a) $T(A) = A^2$
- (b) T(A) = tr(A)
- (c) $T(A) = A + A^T$
- **2.** (a) $T(A) = (A)_{11}$
- (b) $T(A) = \theta_{2 \times 2}$
- (c) T(A) = cA
- In Exercises 3–9, determine whether the mapping T is a linear transformation, and if so, find its kernel.
- 3. $T: \mathbb{R}^3 \to \mathbb{R}$, where $T(\mathbf{u}) = \|\mathbf{u}\|$.
- **4.** $T: \mathbb{R}^3 \to \mathbb{R}^3$, where \mathbf{v}_0 is a fixed vector in \mathbb{R}^3 and $T(\mathbf{u}) = \mathbf{u} \times \mathbf{v}_0$.
- 5. $T: M_{22} \rightarrow M_{23}$, where B is a fixed 2×3 matrix and T(A) = AB.
- **6.** $T: M_{22} \rightarrow R$, where
 - (a) $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = 3a 4b + c d$
 - (b) $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a^2 + b^2$
- 7. $T: P_2 \rightarrow P_2$, where
 - (a) $T(a_0 + a_1x + a_2x^2) = a_0 + a_1(x+1) + a_2(x+1)^2$
 - (b) $T(a_0 + a_1x + a_2x^2)$ = $(a_0 + 1) + (a_1 + 1)x + (a_2 + 1)x^2$
- **8.** $T: F(-\infty, \infty) \to F(-\infty, \infty)$, where
 - (a) T(f(x)) = 1 + f(x)
 - (b) T(f(x)) = f(x+1)
- **9.** $T: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$, where

 $T(a_0, a_1, a_2, \ldots, a_n, \ldots) = (0, a_0, a_1, a_2, \ldots, a_n, \ldots)$

- **10.** Let $T: P_2 \to P_3$ be the linear transformation defined by T(p(x)) = xp(x). Which of the following are in ker(T)?
 - (a) x^2
- (b) 0
- (c) 1 + x
- (d) -x
- 11. Let $T: P_2 \to P_3$ be the linear transformation in Exercise 10. Which of the following are in R(T)?
 - (a) $x + x^2$
- (b) 1 + x
- (c) $3 x^2$ (d) -x
- **12.** Let *V* be any vector space, and let $T: V \to V$ be defined by $T(\mathbf{v}) = 3\mathbf{v}$.
 - (a) What is the kernel of T?
 - (b) What is the range of T?
- 13. In each part, use the given information to find the nullity of the linear transformation T.
 - (a) $T: \mathbb{R}^5 \to \mathbb{R}^5$ has rank 3.
 - (b) $T: P_4 \rightarrow P_3$ has rank 1.

- (c) The range of $T: M_{mn} \to R^3$ is R^3 .
- (d) $T: M_{22} \to M_{22}$ has rank 3.
- **14.** In each part, use the given information to find the rank of the linear transformation *T*.
 - (a) $T: \mathbb{R}^7 \to M_{32}$ has nullity 2.
 - (b) $T: P_3 \to R$ has nullity 1.
 - (c) The null space of $T: P_5 \rightarrow P_5$ is P_5 .
 - (d) $T: P_n \to M_{mn}$ has nullity 3.
- **15.** Let $T: M_{22} \to M_{22}$ be the dilation operator with factor k = 3.
 - (a) Find $T\left(\begin{bmatrix} 1 & 2 \\ -4 & 3 \end{bmatrix}\right)$.
 - (b) Find the rank and nullity of T.
- **16.** Let $T: P_2 \rightarrow P_2$ be the contraction operator with factor k = 1/4.
 - (a) Find $T(1 + 4x + 8x^2)$.
 - (b) Find the rank and nullity of T.
- 17. Let $T: P_2 \to R^3$ be the evaluation transformation at the sequence of points -1, 0, 1. Find
 - (a) $T(x^2)$
- (b) ker(T)
- (c) R(T)
- **18.** Let *V* be the subspace of $C[0, 2\pi]$ spanned by the vectors 1, $\sin x$, and $\cos x$, and let $T: V \to R^3$ be the evaluation transformation at the sequence of points $0, \pi, 2\pi$. Find
 - (a) $T(1 + \sin x + \cos x)$
- (b) ker(T)

- (c) R(T)
- **19.** Consider the basis $S = \{\mathbf{v}_1, \mathbf{v}_2\}$ for R^2 , where $\mathbf{v}_1 = (1, 1)$ and $\mathbf{v}_2 = (1, 0)$, and let $T: R^2 \to R^2$ be the linear operator for which

 $T(\mathbf{v}_1) = (1, -2)$ and $T(\mathbf{v}_2) = (-4, 1)$

Find a formula for $T(x_1, x_2)$, and use that formula to find T(5, -3).

20. Consider the basis $S = \{\mathbf{v}_1, \mathbf{v}_2\}$ for R^2 , where $\mathbf{v}_1 = (-2, 1)$ and $\mathbf{v}_2 = (1, 3)$, and let $T : R^2 \to R^3$ be the linear transformation such that

$$T(\mathbf{v}_1) = (-1, 2, 0)$$
 and $T(\mathbf{v}_2) = (0, -3, 5)$

Find a formula for $T(x_1, x_2)$, and use that formula to find T(2, -3).

21. Consider the basis $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ for R^3 , where $\mathbf{v}_1 = (1, 1, 1), \quad \mathbf{v}_2 = (1, 1, 0), \quad \text{and} \quad \mathbf{v}_3 = (1, 0, 0), \quad \text{and let } T: R^3 \to R^3 \text{ be the linear operator for which}$

$$T(\mathbf{v}_1) = (2, -1, 4), \quad T(\mathbf{v}_2) = (3, 0, 1),$$

 $T(\mathbf{v}_3) = (-1, 5, 1)$

Find a formula for $T(x_1, x_2, x_3)$, and use that formula to find T(2, 4, -1).

22. Consider the basis $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ for R^3 , where $\mathbf{v}_1 = (1, 2, 1), \quad \mathbf{v}_2 = (2, 9, 0), \quad \text{and} \quad \mathbf{v}_3 = (3, 3, 4), \quad \text{and let } T: R^3 \to R^2 \text{ be the linear transformation for which}$

$$T(\mathbf{v}_1) = (1, 0), \quad T(\mathbf{v}_2) = (-1, 1), \quad T(\mathbf{v}_3) = (0, 1)$$

Find a formula for $T(x_1, x_2, x_3)$, and use that formula to find T(7, 13, 7).

23. Let $T: P_3 \rightarrow P_2$ be the mapping defined by

$$T(a_0 + a_1x + a_2x^2 + a_3x^3) = 5a_0 + a_3x^2$$

- (a) Show that T is linear.
- (b) Find a basis for the kernel of T.
- (c) Find a basis for the range of T.
- **24.** Let $T: P_2 \to P_2$ be the mapping defined by

$$T(a_0 + a_1x + a_2x^2) = 3a_0 + a_1x + (a_0 + a_1)x^2$$

- (a) Show that T is linear.
- (b) Find a basis for the kernel of T.
- (c) Find a basis for the range of T.
- **25.** (a) (*Calculus required*) Let $D: P_3 \to P_2$ be the differentiation transformation $D(\mathbf{p}) = p'(x)$. What is the kernel of D?
 - (b) (*Calculus required*) Let $J: P_1 \to R$ be the integration transformation $J(\mathbf{p}) = \int_{-1}^{1} p(x) dx$. What is the kernel of J?
- **26.** (*Calculus required*) Let V = C[a, b] be the vector space of continuous functions on [a, b], and let $T: V \to V$ be the transformation defined by

$$T(\mathbf{f}) = 5f(x) + 3 \int_{a}^{x} f(t) dt$$

Is T a linear operator?

- **27.** (*Calculus required*) Let V be the vector space of real-valued functions with continuous derivatives of all orders on the interval $(-\infty, \infty)$, and let $W = F(-\infty, \infty)$ be the vector space of real-valued functions defined on $(-\infty, \infty)$.
 - (a) Find a linear transformation $T: V \to W$ whose kernel is P_3 .
 - (b) Find a linear transformation $T: V \to W$ whose kernel is P_n .
- **28.** For a positive integer n > 1, let $T: M_{nn} \to R$ be the linear transformation defined by $T(A) = \operatorname{tr}(A)$, where A is an $n \times n$ matrix with real entries. Determine the dimension of $\ker(T)$.
- **29.** (a) Let $T: V \to R^3$ be a linear transformation from a vector space V to R^3 . Geometrically, what are the possibilities for the range of T?
 - (b) Let $T: \mathbb{R}^3 \to W$ be a linear transformation from \mathbb{R}^3 to a vector space W. Geometrically, what are the possibilities for the kernel of T?

- **30.** In each part, determine whether the mapping $T: P_n \to P_n$ is linear.
 - (a) T(p(x)) = p(x+1)
 - (b) T(p(x)) = p(x) + 1
- **31.** Let \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 be vectors in a vector space V, and let $T: V \to R^3$ be a linear transformation for which

$$T(\mathbf{v}_1) = (1, -1, 2), \quad T(\mathbf{v}_2) = (0, 3, 2),$$

 $T(\mathbf{v}_3) = (-3, 1, 2)$

Find $T(2\mathbf{v}_1 - 3\mathbf{v}_2 + 4\mathbf{v}_3)$.

Working with Proofs

32. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for a vector space V, and let $T: V \to W$ be a linear transformation. Prove that if

$$T(\mathbf{v}_1) = T(\mathbf{v}_2) = \cdots = T(\mathbf{v}_n) = \mathbf{0}$$

then T is the zero transformation.

33. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for a vector space V, and let $T: V \to V$ be a linear operator. Prove that if

$$T(\mathbf{v}_1) = \mathbf{v}_1, \quad T(\mathbf{v}_2) = \mathbf{v}_2, \dots, \quad T(\mathbf{v}_n) = \mathbf{v}_n$$

then T is the identity transformation on V.

34. Prove: If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V and $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ are vectors in a vector space W, not necessarily distinct, then there exists a linear transformation $T: V \to W$ such that

$$T(\mathbf{v}_1) = \mathbf{w}_1, \quad T(\mathbf{v}_2) = \mathbf{w}_2, \ldots, \quad T(\mathbf{v}_n) = \mathbf{w}_n$$

True-False Exercises

TF. In parts (a)–(i) determine whether the statement is true or false, and justify your answer.

- (a) If $T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2)$ for all vectors \mathbf{v}_1 and \mathbf{v}_2 in V and all scalars c_1 and c_2 , then T is a linear transformation.
- (b) If **v** is a nonzero vector in V, then there is exactly one linear transformation $T: V \to W$ such that $T(-\mathbf{v}) = -T(\mathbf{v})$.
- (c) There is exactly one linear transformation $T: V \to W$ for which $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u} \mathbf{v})$ for all vectors \mathbf{u} and \mathbf{v} in V.
- (d) If \mathbf{v}_0 is a nonzero vector in V, then the formula $T(\mathbf{v}) = \mathbf{v}_0 + \mathbf{v}$ defines a linear operator on V.
- (e) The kernel of a linear transformation is a vector space.
- (f) The range of a linear transformation is a vector space.
- (g) If $T: P_6 \to M_{22}$ is a linear transformation, then the nullity of T is 3.
- (h) The function $T: M_{22} \to R$ defined by $T(A) = \det A$ is a linear transformation.
- (i) The linear transformation $T: M_{22} \rightarrow M_{22}$ defined by

$$T(A) = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} A$$

has rank 1.