Name:	ACT BIRK
Student ID:	

Exam 3

PLEASE READ ALL THE DIRECTIONS CAREFULLY

- Show all work. Solutions without proper work will receive no credit.
- Present work in a clear, organized manner.
- No notes, books, or calculators allowed.

1-6

- Write answers in <u>lowest terms</u> when appropriate
- Good Luck!

Problem	1	2	3	4	5	6	7	Bonus	Total
Score	3.		1	(ma)	5	141	NOWO	· Comme	
Possible	8	10	16	13	16	22	150	10	100

1. (8 points) Graph the inequality on the xy-plane. Label all parts of the graph (the y-axis, x-axis, two points, and the boundary line).

a. (8 points) 4x + 3y < 6

(8 points)
$$4x + 3y < 6$$

 $x - int: y = 0 \rightarrow 4x = 6$
 $x = \frac{3}{2}$
 $y - int: x = 0 \rightarrow 3y = 6$
 $y = 2$
 $y = 2$

$$y-int: X=0 -D 3y=0 (0,2)$$

2. (10 points) Consider the relation:

$$\{(2,-5),(3,-4),(2,0),(1,-5)\}$$

a. (4 points) Given the relation, is it a function? Explain.

Not a function because x=2 is associated with two y values: (2,-5)

b. (6 points) State the domain and range of the relation using set notation.

Domain: \$1,2,39

Range: {-5,-4,0}

3. (16 points) Solve the following systems by using the indicated method.

a. (8 points) Solve by substitution.
$$\begin{cases} x - 2y = -4 & \implies x = 2y - 4 \\ 3x + y = -5 \end{cases}$$

$$3 \times + 9 = -5$$

 $3(2y-4) + y = -5$ Solve for \sqrt{x}
 $(4y-12+y=-5)$ $x = 2y-4$
 $(4y-12=-5)$ $x = 2(1)-4$ Ans: $(-2,1)$
 $(4y-12=-5)$ $(4y-12=-5)$

b. (8 points) Solve by elimination.
$$\begin{cases} 4x + 3y = 2 \\ 3x + 2y = 3 \end{cases}$$

$$\begin{cases}
-2 \cdot (4x + 3y) = 2 \cdot (-2) \\
3 \cdot (3x + 2y) = 3 \cdot (3)
\end{cases}$$

$$\begin{cases}
-8x - 6y = -4 \\
9x + 6y = 9
\end{cases}$$

$$\begin{cases}
4(5) + 3y = 2 \\
20 + 3y = 2 \\
3y = -18
\end{cases}$$

$$\begin{cases}
y = -6
\end{cases}$$

4. (13 points) Simplify the expressions.

a. (4 points)
$$7x^3 + 3x^2 - 2x + x - 5x^3 + 1$$

= $2x^3 + 3x^2 - x + 1$

b. (4 points)
$$(-2x^2 - 3x + 9) + (3x^2 - 2x + 8)$$

= $\chi^2 - 5\chi + 17$

c. (5 points)
$$(6x^2 + 11x + 2) - (4x^2 - 2x - 7)$$

= $(6x^2 + 11x + 2) - (4x^2 - 2x - 7)$
= $(6x^2 + 11x + 2) - (4x^2 - 2x - 7)$
= $(6x^2 + 11x + 2) - (4x^2 - 2x - 7)$
= $(6x^2 + 11x + 2) - (4x^2 - 2x - 7)$
= $(6x^2 + 11x + 2) - (4x^2 - 2x - 7)$
= $(6x^2 + 11x + 2) - (4x^2 - 2x - 7)$
= $(6x^2 + 11x + 2) - (4x^2 - 2x - 7)$

5. (16 points) Solve the system of linear inequalities by graphing. Label all parts of the graph: y-axis, x-axis, each boundary line.

- 6. (22 points) Simplify the following expressions so the exponents are positive.
 - a. $(3 \text{ points}) (6y^4)(5y^5)$ = $30y^9$
 - b. (5 points) $(-6a^3b^{-4})(4a^{-2}b^8)$ = $-24ab^4$
 - c. (5 points) $\left(\frac{3x}{y^{-2}}\right)^{-1}$ $= \frac{y^{-2}}{3x} + x^{-2} = \frac{1}{3xy^{2}}$
 - d. $(4 \text{ points}) (5 \times 10^4)(6 \times 10^3)$ = 30×10^7 = 3.0×10^8
 - e. $(5 \text{ points}) \frac{16 \times 10^7}{4 \times 10^9} = 4 \times 10^2 \times \text{neg. txponent okay}$ b/c scientific notation.

 My directions were not accurate.

7. (15 points) Find each product.

a. (6 points)
$$-x(x^3 + 5x - 4)$$

$$-x^{4} - 5x^{2} + 4x$$

b.
$$(4 \text{ points}) (x-3)(x+5)$$

= $x^2 + 5x - 3x - 15$
= $x^2 + 2x - 15$

c.
$$(5 \text{ points}) (2x+1)(x^2-7x+2)$$

= $\chi^2(2x+1) - 7x(2x+1) + 2(2x+1)$
= $2x^3 + x^2 - 14x^2 - 7x + 4x + 2$
= $2x^3 - 13x^2 - 3x + 2$

Bonus: Solve the system.
$$\begin{cases} \frac{x}{5} + \frac{y}{4} = 3 \\ \frac{x}{10} - \frac{y}{2} = -1 \end{cases}$$
 (2)

(1)
$$20(\frac{x}{5} + \frac{4}{4}) = 20(3)$$
 $7 \rightarrow 4x + 5y = 60$
(2) $10(\frac{x}{10} - \frac{4}{2}) = 10(-1)$ $5x = 50$

Solve for y

$$X - Sy = -10$$

$$-5y = -20$$