

Chapter 5 Atmospheric Water and Weather

Elemental Geosystems 5e

Robert W. Christopherson Charles E. Thomsen

Water and Atmospheric Moisture

- Water on Earth: Location and Properties
- Humidity
- Atmospheric Stability
- Clouds and Fog
- Air Masses
- Atmospheric Lifting Mechanisms
- Midlatitude Cyclonic Systems
- Violent Weather

Water on Earth

- Quantity Equilibrium
- Distribution of Earth's Water Today
- Unique Properties of Water
- Heat Properties
 - **■** Ice
 - **■** Water
 - Water vapor
 - Heat properties of water in nature

Land and Water Land and Water Hemispheres

Copyright © 2006 Pearson Prentice Hall, Inc.

Ocean and Freshwater Distribution

^{*}Data in thousands (000): includes all marginal seas.

Copyright © 2006 Pearson Prentice Hall, Inc.

Three States of Water

Figure 5.4

Water's Heat Energy Characteristics

Copyright © 2006 Pearson Prentice Hall, Inc.

Humidity

- Relative Humidity
- Expressions of Humidity
 - Vapor pressure
 - **■** Specific humidity
 - **■** Instruments for measurement

Relative Humidity

Figure 5.7

Humidity Patterns July 22 July 23

Figure 5.10

Maximum Specific Humidity

Figure 5.12

Copyright © 2006 Pearson Prentice Hall, Inc.

Humidity Instruments

(b)

Atmospheric Stability

- Adiabatic Processes
 - Dry adiabatic rate (DAR)
 - Moist adiabatic rate (MAR)
 - Stable and unstable atmospheric conditions

Atmospheric Stability

- Adiabatic Processes
- Adiabatic processes apply to MOVING parcels of air
- ELR (Environmental Lapse Rate) refers to static (UNMOVING) atmosphere
- Stable and Unstable Atmospheric Conditions

Atmospheric Stability

- Stability: tendency of a parcel of air to rise (unstable conditions) or not rise (stable conditions)
- Determined by relationship of ELR to DAR or MAR

Adiabatic Processes

- Dry adiabatic rate
 - ≥ 10 C°/ 1000 m
- Moist adiabatic rate
 - **≥** 6 C°/ 1000 m

Buoyancy

Copyright © 2006 Pearson Prentice Hall, Inc.

Adiabatic Processes

(a) Cooling by expansion

(b) Heating by compression

Figure 5.15

Atmospheric Temperatures and Stability

Copyright © 2006 Pearson Prentice Hall, Inc.

Figure 5.16

Clouds and Fog

- Cloud Types and Identification
- Fog
 - Advection fog
 - Radiation fog

Cloud Types and Identification

Copyright © 2006 Pearson Prentice Hall, Inc.

Copyright © 2006 Pearson Prentice Hall, Inc.

Cumulonimbus Development

(b) Copyright © 2006 Pearson Prentice Hall, Inc.

Copyright © 2006 Pearson Prentice Hall, Inc.

Advection Fog

Figure 5.20

Evaporation Fog

Figure 5.21

Valley Fog

Copyright © 2006 Pearson Prentice Hall, Inc.

Figure 5.22

Radiation Fog

Copyright © 2006 Pearson Prentice Hall, Inc.

Air Masses

Lake Effect Snowbelts

- Convectional Lifting
- Orographic Lifting
- Frontal Lifting
 - **■** Cold fronts
 - **■** Warm fronts

Atmospheric Lifting Mechanisms

(a) Convergent

Copyright © 2006 Pearson Prentice Hall, Inc.

(b) Convectional (local heating)

Copyright © 2006 Pearson Prentice Hall, Inc.

(c) Orographic (barrier)

Copyright © 2006 Pearson Prentice Hall, Inc.

(d) Frontal (e.g. cold front)

Copyright © 2006 Pearson Prentice Hall, Inc.

Local Heating and Convection

Copyright © 2006 Pearson Prentice Hall, Inc.

Figure 5.28

Convection over Florida Georgia 30° **ATLANTIC Florida OCEAN** Tampa St. Petersburg Lauderdale Miami Key West Florida keys Everglades Nat. 25° 85° 300 MILES 150 150 300 KILOMETERS

Copyright © 2006 Pearson Prentice Hall, Inc.

Figure 5.29

Orographic Precipitation

Copyright © 2006 Pearson Prentice Hall, Inc.

Cold Front

Cold Front and Squall Line

Copyright © 2006 Pearson Prentice Hall, Inc.

Figure 5.31b

Warm Front

- Life Cycle of a Midlatitude Cyclone
 - **■** Storm tracks
 - Open stage
 - Occluded stage

Midlatitude Cyclone

Figure 5.33

Average and Actual Storm Tracks

(a) Average storm tracks

Copyright © 2006 Pearson Prentice Hall, Inc.

(b) Actual storm tracks in March 1991

Prentice Hall, Inc.

Copyright © 2006 Pearson Prentice Hall, Inc.

Midlatitude Cyclone

Figure 5.35

Weather Forecasting

Copyright © 2006 Pearson Prentice Hall, Inc.

Copyright @ 2006 Pearson Prentice Hall, Inc.

Figure 5.3.2

900 M O

Copyright @ 2006 Pearson Prentice Hall, Inc.

Violent Weather

- Thunderstorms
 - Atmospheric turbulence
 - Lightning and thunder
 - **■** Hail
- Derechos
- Tornadoes
 - Tornado measurement and science
- Tropical Cyclones
 - Hurricanes and typhoons
 - ➤ Physical structure
 - A final word

Thunderstorms

Figure 5.36

Thunderstorms

(b) Winter (Dec. 1999, Jan. and Feb. 2000)

Clouds overshoot top of thunderstorm Anvil Mesocyclone (3 to 10 km diameter) Tornado Air inflows

Twister!

Figure 5.38

Tornadoes

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

(b)

Figure 5.39

Designation		Winds	Features							
Tropical disturbance Tropical depression		Variable, low Up to 34 knots (63 kmph, 39 mph)	Definite area of surface low pressure; patches of clouds Gale force, organizing circulation; light to moderate rain							
Tropical storm		35–63 knots (63–118 kmph, 39–73 mph)	Closed isobars; definite circular organization; heavy rain; assigned a name Circular, closed isobars; heavy rain, storm surges; tornadoes in right-front quadrant							
Hurricane (Atlantic and E. Pacific) Typhoon (W. Pacific) Cyclone (Indian Ocean, Australia)		Greater than 65 knots (119 kmph, 74 mph)								
Saffir-Simpson Hurricane Damage Potential Scale										
Category	ory Wind Speed		Notable Atlantic Examples							
1	65–82 knots (74–95 mph	_								
2	83–95 knots (96–110 mp	_								
3	96–113 knots (111–130 m	1985 El	ena; 1991 Bob; 1995 Roxanne, Marilyn; 1998 Bonnie							
4	114–135 knots (131–155 m	1979 Fr	rederic; 1985 Gloria; 1995 Felix, Luis, Opal; 2004 Charley Georges							
5 >135 knots (>155 mph)		1935 No 1969 Ca	1935 No. 2; 1938 No. 4; 1960 Donna; 1961 Carla; 1969 Camille; 1979 David; 1988 Gilbert; 1989 Hugo; 1992 Andrew; 1998 Mitch							

Copyright © 2006 Pearson Prentice Hall, Inc.

Table 5.1

Tropical Cyclone Classification

Tropical Cyclones

Copyright © 2006 Pearson Prentice Hall, Inc.

Brazilian Hurricane

Figure 5.40

2005 Hurricane Season

8	T-Tropical Storm, or H (cat. no.)-Hurricane (affected US)	2005 Dates (inclusive)	Top average wind speed (mph/kmph)	Lowest Central Pressure (mb)	Days as: H or T H T	
18	T-Arlene (US)	6/8 - 6/12	70/113	989	-	3
	T-Bret	6/28 - 6/30	40/64	1004	-	1
	T-Cindy (US)	7/03 - 7/06	70/113	997	_	2
	H4-Dennis (US)	7/05 - 7/11	150/241	930	4	3
	H4-Emily	7/11 - 7/21	155/249	930	7	4
	T-Franklin	7/21 - 7/29	70/113	997	_	8
	T-Gert	7/23 - 7/25	45/72	1005	-	2
	T-Harvey	8/02 - 8/08	65/105	994	_	6
	H2-Irene	8/04 - 8/18	100/161	975	3	8
	T-Jose	8/22 - 8/23	50/80	1001	-	1
	H5-Katrina (US)	8/23 - 8/30	175/282	902	4	3
	T-Lee	8/28 - 9/02	40/64	1007	-	1
	H3-Maria	9/01 - 9/10	115/185	960	5	3
	H1-Nate	9/05 - 9/10	90/145	979	3	4
	H1-Ophilia (US	9/06 - 9/18	85/137	976	7	9
	H1-Philippe	9/17 - 9/24	80/129	985	2	5
	H5-Rita (US)	9/18 - 9/25	175/282	987	5	4
	H1-Stan	10/01 - 10/05	80/129	979	1	3
	T-Tammy (US)	10/05 - 10/06	50/80	1001	-	2
	H1-Vince	10/09 - 10/11	75/121	987	2	2
	H5-Wilma (US)	10/15 - 10/25	175/282	882*	7	2
	T-Alpha	10/22 - 10/24	50/80	998	-	2
	H3-Beta	10/27 - 10/31	115/185	960	2	4
	T-Gamma	11/14 - 11/21	45/72	1004	-	3
	T-Delta	11/23 - 11/28	70/113	980	-	6
	H1-Epsilon	11/29 - 12/08	80/129	987	3	7
	T-Zeta	12/30 - 01/05	65/105	992	-	7

Figure 5.41

Profile of a Hurricane

High-altitude winds

Divergence aloft

End of Chapter 5

Elemental Geosystems 5e

Robert W. Christopherson Charles E. Thomsen